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Solving Volterra integro-differential and weakly singular Volterra integral equations
by Laplace transform

Y. Amirian

We can solve linear Volterra integro-differential equations by using series solution, decomposi-
tion and modified decomposition methods and sometimes we can transform linear Volterra integro-
differential equation to an integral equation or differential equation and these two mentioned equa-
tions can be solved by their methods. Weakly singular second-kind Volterra integral equations also
can be solved by using decomposition and modified decomposition methods.

This paper presents an introduction for above methods and extends solving Volterra integro-
differential and weakly singular second-kind Volterra integral equations by using Laplace transform.

Superclosure Between the Elliptic Ritz Projector and the Approximate Eigenfunction
and Its Application to a Postprocessing of Finite Element Eigenvalue Problems

A. Andreev

An estimate confirming the superclosure between the elliptic Ritz projector and the corre-
sponding eigenvectors, obtained by finite element method, is hereby proved. This result is true
for a large class of self-adjoint 2m—order elliptic operators. An application of this theorem to the
superconvergence postprocessing patch-recovery technique for finite element eigenvalue problems is
also presented. Finally, the theoretical investigations are supported by numerical experiments.

One-Dimensional Patch-Recovery Finite Element Method for Fourth-Order Elliptic
Problems

A. Andreev, T. Dimov, M. Racheva

Interpolated one-dimensional finite elements are constructed, applied to the fourth-order self-
adjoint elliptic boundary-value problems. A superconvergence posytprocessing approach, based on
the patch-recovery method, is presented. It is proved that the order of convergence depends on the
different variational forms related to the variety of the corresponding elliptic operators. Finally,
the numerical results related to a problem with practical application are presented.




Modelling of the Deflection Curve for Twist Drill with Straight Shank Fixed in
Three-jaw Chuck

A. Andreev, J. Mazimov, M. Racheva

The aim of this study is to present a new approach for investigation of an important problem of
mechanical engineering. Namely, the model of twist drill embeded in three-jaw chuck is discussed.
This problem could be considered as a variant of a beam on the Winckler’s foundation which is
under the influence of a cross-force.

Our principal aim is to deduce the general mathematical model for this type of constructions.
In order to determine the dynamic stresses of the drill using any variational numerical methods
we present the corresponding variational formulations. These presentations are characterized by
mixed formulation. So, the mixed finite element method is convenient for this kind of problems.
The possibility for symmetrization of the weak formulation of the model problem is also discussed.

On the Solvability of the Steady-State Rolling Problem

T. Angelov

In this paper a steady-state rolling problem with nonlinear function, for rigid-plastic, rate
sensitive and slightly compressible materials is considered. Its variational formulation is given
and existence and uniqueness results,obtained with the help of successive iteration methods are
presented. Considering the slight material compressibility as a method of penalisation , it is further
shown, that when the compressibility parameter tends to zero the solution of the problem for
incompressible materials is approached.

Numerical solution of elliptic interface problems using extrapolation methods

1. Angelova

In this work we develop and test Richardson extrapolation scheme of order higher then 3
for elliptic equations with discontinuous coefficients and singular sources. Supporting numerical
experiments are discussed.




Comparison of Two Local Refinement Methods for Large Scale Air Pollution
Simulations

A. Antonov

Two methods for Large Scale Air Pollution (LSAP) simulations over static grids with local
refinements using the object-oriented version of the Danish Eulerian Model are compared.

The first method is a Galerkin finite element method over a static locally refined grid. We
will call this algorithm Static Local Refinements Algorithm (SLRA). We compare SLRA and the
Recursive Static-Regridding Algorithm (RSRA), in which regular grids with finer resolution are
nested within a coarser mother grid.

RSRA and SLRA are compared how they solve the following air pollution problem: how to
utilize more detailed emission and meteorological data over a region of the computation’s domain.
In this article they are compared on the translational and rotational cone tests, and simulations
with real data. The drawbacks and advantages of the methods are discussed.

Relaxation Techniques for Nested Iterations in Finite Element Methods

M. Arioli, D.Loghin

Finite element methods represent an important source of sparse, generally nonlinear and non-
symmetric systems of equations. For large problems, the solution is obtained through some nested
iteration technique where the aim is to keep the computational load to a minimum through a ju-
dicious choice of stopping criteria. Invariably however, the theoretical or empirical convergence
criteria use Euclidean norms of the residuals involved. However, finite element discretizations pro-
vide their own convergence criteria via matrix norms inherited from the functional setting of the
original (weak) formulation. In this work we present an approach to relaxation based on norms
induced by the underlying formulation. In particular, we provide approximations of these matrix
norms based on the Krylov subspace information generated by methods such as GMRES, together
with guidelines for their use inside nested iterations. We illustrate the resulting improvements on
applications from fluid flow modeling.

Numerical studies of a singularity formation process in a coupled system of
Yang-Mills-dilaton equations

E. Ayrjan, E. Donets, T. Boyadjiev, O. Streltsova

We present a detailed description of mathematical methods, used for numerical studies of a
mixed type problem in a coupled system of nonlinear wave equations. These equations arise in the
problem of interaction of spherically symmetric SU(2) massless Yang-Mills fields with a dilaton
field in 3 + 1 Minkowski space-time. For the proposed finite-difference scheme, approximated the
original problem, we use the corresponding energy identity which is a discrete analog of the energy
conservation law. Based on this scheme, we studied the singularity formation process in the coupled
system of Yang-Mills-dilaton evolution equations. The numerical analysis shows that if the initial
data exceed some threshold value, then the solutions shrinking to r = 0 for finite time 7. These
solutions have universal asymptotic profile which is a stable self-similar solution of the system of
evolution equations.




A Quasi-Monte Carlo method for an Elastic Electron Backscattering Problem

E.Atanassov, M. Durchova

The elastic electron backscattering is a problem that is important for many theoretical and
experimental techniques, especially in the determination of the inelastic mean free paths. This effect
arrises when a monoenergetic electron beam bombards a solid target and some of the electrons are
scattered without energy loss.The description of the flow can be written as an integral equation and
may be solved by Monte Carlo methods. In this paper we investigate the possibility of improving
the convergence of the Monte Carlo algorithm by using scrambled low-discrepancy sequences. We
demonstrate how by taking advantage of the smoothness of the differential elastic-scattering cross-
section a significant decrease of the error is achieved.

Numerical Treatment of Fourth Order Singularly Perturbed Boundary Value
Problems

B. Attili, Al-Ain

We will consider the numerical of fourth order singularly perturbed two point boundary value
problems (BVP). The perturbation parameter which is a small positive parameter appears as the
coefficient of the highest derivative. The method starts by transforming the BVP into a system
of two second order ordinary differential equations with appropriate boundary conditions. The
interval over which the BVP is defined will be subdivided into three disjoint regions. The system
will then be solved separately on each subinterval. We combine the obtained solutions to get the
solution of the BVP over the entire interval. For the inner regions, the boundary conditions at the
end points are obtained through the zero order asymptotic expansion of the solution of the BVP.
Examples will be solved to demonstrate the method and its efficiency.

Selection Strategies for Set-Valued Runge-Kutta Methods

Robert Baier

A general framework for proving an order of convergence for set-valued Runge Kutta methods
is given in the case of linear differential inclusions, if the attainable set at a given time should be
approximated. The set-valued method is interpreted as a (set-valued) quadrature method with dis-
turbed values for the fundamental solution at the nodes of the quadrature method. If the precision
of the quadrature method and the order of the disturbances fit together, then an overall order of
convergence could be guaranteed. The results are applied to modified Euler method to emphasize
the dependence on a suitable selection strategy (one strategy leads to an order breakdown).




SkyRadiance in the Limits of Totality: Numerical Modelling
K. Bakalova, D. Bakalov

Ground-based observations of the corona and of the spectral sky radiance within the totality
region during a total solar eclipse are of significant interest because the contribution from direct
and single scattered sun light is eliminated. Spectral images of the corona and measurements of the
radiance in direction of the local zenith have already been performed in the frame of the Bulgarian
National Scientific Programme for investigations during the total solar eclipse of 1999 August 11.
In order to interpret the obtained data, numerical models of the propagation of single scattered
coronal and of double scattered sun radiation had to be developed.

The early estimates of [1] involved many simplifications: the aerosol scattering was modelled
with exponentially decreasing function of the altitude; the range of scattering angles was limited
to 90°, etc. The sky brightness in the totality region was assumed to be mainly due to multiple
scattered sunlight inside the umbra. The single scattered coronal radiation was neglected. The
numerical approach developed in the framework of the National Eclipse Programme used instead
a model of the atmosphere based on experimental data on the altitude stratification and spectral
dependence of the aerosol phase function, and put no restrictions on the angle of scattering. Still,
the evaluation of the zenith spectral sky radiance was based on the approximate model of flat earth-
atmosphere system. As a whole, these results do not provide a satisfactory quantitative description
of the double scattered sun radiation.

It has been shown recently that single scattered coronal radiation cannot be neglected: at
angles beyond 4 solar radii from the axis of totality it dominates the direct flux from the corona
[2]. The first numerical estimates show that along the axis of totality the single scattered coronal
radiation exceeds the double scattered sun radiation, opposite to what was assumed earlier [3]. The
questions therefore arise whether the multiple scattered sun radiation is really responsible for the
sky brightness during a total solar eclipse, and whether it is possible to measure separately the
double scattered sun radiation inside the umbra.

In the present paper we evaluate the radiance of double scattered sunlight and of single scattered
coronal radiation during a total solar eclipse as a function of the direction of observation. We use
a refined numerical model of the optical properties of the atmosphere, which is appropriate for
our geographic region, and consistently account for the effects of the curvature of Earth. We also
review critically the possibilities of measuring separately the double scattered sun radiation inside
the umbra. The results can be applied not only to the interpretation of data accumulated in
observations of the 1999 solar eclipse, but also - after minor updates in the atmospheric model - to
data from any future total solar eclipse.
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Numerical Methods for the Landau-Lifshitz-Gilbert Equation

L. Banas

The evolution of magnetization in a ferromagnetic material is governed by the Landau-Lifshitz-
Gilbert (LLG) equation

Here consisting of several contributions, namely, anisotropy, exchange, magnetostriction and
magnetic field. The LLG equation is the key equation in magnetic recording applications.

An important conservation property associated with LLG equation is everywhere in the ferro-
magnet. It is desirable that this property is preserved in the numerical approximations.

We will give a systematic overview of the numerical approaches which are usually used for
the LLG equation when the magnetostrictive contribution is neglected. We will discuss numerical
properties of the presented schemes such as stability and convergence. A few numerical examples
will demonstrate the performance of specific methods.

When magnetostriction is included, the LLG equation has to be coupled with an equation of
elastodynamics. We will briefly discuss the extension of existing methods towards this problem.
Some recently obtained theoretical results in this field will also be presented.

Comparison Between Numerical Methods Applied to Experimental Data from
Satellite B-1300

N.Bankov, M.Kaschiev

The experiments, used to meagure the cold plasma ionosphere parameters, generate mathemat-
ical problems, that usually are ~ ill posed”. There are two basic approaches to solve such problems:
deterministic, developed by Tickonov, and Hubber’s "robust estimation . The results obtained
from these two methods are compared with results obtained from modiffied Newton method. In
this case we used the nonlinear Least Square Method. The numerical results show that the last
method is stable and has a larger region for congevergence than other methods. Some important
numerical calculations are given in the paper.




Prestressed Modal Analysis Using Finite Element Package ANSYS
R.Bedri, M.O. Al-Nais

It is customary to perform modal analysis on mechanical systems without due regards to their
stress state. This approach is of course well accepted in general but can prove inadequate when
dealing with cases like spinning blade turbines or stretched strings, to name but these two examples.
It is believed that the stress stiffening can change the response frequencies of a system which impacts
both modal and transient dynamic responses of the system. This is explained by the fact that the
stress state would influence the values of the stiffness matrix. Some other examples can be inspired
directly from our daily life, i.e., nay guitar player or pianist would explain that tuning of his playing
instrument is intimately related to the amount of tension put on its cords. It is also expected that
the same bridge would have different dynamic responses at night and day in places where daily
temperature fluctuations are severe. These issues are unfortunately no sufficiently well addressed
in vibration textbooks when not totally ignored. In this contribution, it is intended to investigate
the effect of prestress on the vibration behavior of simple structures using finite element package
ANSYS. This is achieved by first performing a structural analysis on a loaded structure then make
us of the resulting stress field to proceed on a modal analysis.

Uniform Convergence of Monotone Iterative Method for Nonlinear
Reaction-Diffusion Problem

1. Boglaev

This paper deals with a discrete monotone iterative method for solving the nonlinear singularly
perturbed parabolic problem

/1’2 (u$$ + uyy) — Ut = f(.’IJ,y,t, U), (x7y7t> S Q7
Q=0x(0,tp], Q={0<z<1,0<y<l1}, f, >0,
u(z,y,t) = g(z,y,t), (x,y,t) € 00 x (0,tx],

u(z,y,0) =u’(z,y), (z,y) € Q,

where p is a small positive parameter and 0f2 is the boundary of Q. For p < 1, the problem is
singularly perturbed and characterized by boundary layers at the boundary 0f).

The monotone method (known as the method of lower and upper solutions) is applied to comput-
ing a nonlinear implicit difference scheme obtained after discretisation of the continuous problem.
The monotone iterative method solves only linear discrete systems at each iterative step of the
iterative process. The initial iteration in the monotone iterative method is either upper or lower
solutions, which can be constructed directly from the difference equation without any knowledge
of the exact solution, this method eliminates the search for the initial iteration as is often needed
in Newton’s method. This elimination gives a practical advantage in the computation of numerical
solutions.



Uniform convergence of the monotone iterative method based on Shishkin- and Bakhvalov-
type meshes is investigated and the rate of convergence is estimated. Numerical experiments are
presented.

Semi-Lagrangian Semi-Implicit Time Splitting Two Time Level sScheme for
Hydrostatic Atmospheric Model

A. Bourchtein

A semi-Lagrangian semi-implicit two time level scheme is considered for hydrostatic atmospheric
model. The algorithm treats in different ways the principal fastest physical components and in-
significant slowest modes. The former are discretized in semi-implicit manner with second order of
accuracy and the latter are approximated by explicit formulas with the first order of accuracy and
using a coarser spatial grid. This approach allows to reduce the computational cost with no loss of
overall precision of the integrations. Numerical experiments with actual atmospheric fields showed
that the developed scheme supplies rather accurate forecasts using time steps up to one hour and
it is more efficient than three time level counterparts.

Modified Stabilizing Corrections Method for Hydrostatic Atmospheric Model

A. Bourchtein

A semi-Lagrangian semi-implicit stabilizing corrections scheme is described for hydrostatic at-
mospheric model. The standard splitting method is modified to reduce additional splitting trun-
cation errors. The accuracy and stability of algorithm are investigated and analysis of truncation
errors as function of time step is done for standard and modified versions. Applied approach allows
to use extended time steps with no loss of accuracy and to keep simple design and computational
efficiency of splitting algorithms. Numerical experiments with actual atmospheric fields showed
that the developed scheme supplies rather accurate forecasts using time steps up to one hour and
it is more accurate than standard splitting.

Nested Iterations and Strengthened Cauchy-Bunyakowski-Schwarz Inequalities

J. Brandts

In this presentation, we discuss new strengthened Cauchy-Bunyakowski-Schwarz inequalities in
the context of finite element methods for elliptic partial differential equations. These inequalities
serve to develop optimal order nested iteration schemes for the corresponding systems of linear
equations. Our interest lies primarily in a superconvergent discretization of the Poisson equa-
tion in four space dimensions using simplicial linear finite elements and their refinements due to
Freudenthal.




Second Order Uniformly Convergent Difference Scheme for Singularly Perturbed
Problem of Mixed Parabolic-Elliptic Type

1. Brayanov

One dimensional singularly perturbed problem of mixed type is considered. The computational
domain is partitioned into two subdomains. In one of them D~ we have parabolic reaction-diffusion
equation and in other DT elliptic convection-diffusion equation. Decomposition into regular and
singular part is constructed. The problem is discretized using an inverse-monotone finite volume
method on Shishkin meshes. We established almost second-order in space pointwise convergence
O(t + N2 In? N ), that is uniform with respect to the perturbation parameter. Numerical experi-
ments, that support the theoretical results are given..

New Perturbation Bounds for the Continuous-time H.-Optimization Problem

N. Christov, M. Konstantinov, P. Petkov,

A complete perturbation analysis of the H.,-optimization problem for continuous-time linear
systems is presented. Both local and nonlocal perturbation bounds are obtained, which are less
conservative than the existing perturbation estimates.

Direct Methods on the Feyer Points for Solution Singular Integro- Differential
Equations in the Complex Plane

1. Caraus

We have elaborated the numerical scheme of reduction method by Faber-Laurent polynomials
for the approximate solution of system of singular integro-differential equations. The equations are
defined on the arbitrary smooth closed contour. The theoretical foundation has been obtained in
Holder spaces.

Variational Approach for Restoring Random-Valued Impulse Noise

Ch. Hu, S. Lui

In this work we present a modified iterative method for removing random-valued impulse noise.
This method has two-phase schemes. The first phase uses the Adaptive center-weighted median
filter to identify those pixels which are likely to be corrupted by noise (noise candidates). In the
second phase, these noise candidates are restored using a detail-preserving regularization method
which allows edges and noise-free pixels to be preserved. This phase is equivalent to solving an
one-dimensional nonlinear equation for each noise candidate. We describe a simple secant-like
method to solve these equations. It converges faster than Newton’s method to solve and requires
less function or derivative evaluations.

10



On Finite Volume Discretization of Elliptic Interface pProblems with Perfect and
Imperfect Contact

T. Chernogorova, R. Fwing, O. Iliev, R. Lazarov

A finite volume discretization of elliptic problems with discontinuous coefficients (interface prob-
lems) is presented. This approximation ensures second order truncation error for the fluxes. It uses
a minimal stensil (5 points in 2-D and 7 points in 3-D) for the case when each interface is orthogonal
to one of the coordinate axes on a grid that, in general, it not required to be aligned with interfaces.

Analysis of Riemann Wave Disintegration Problem for the Testing of the Numerical
Methods

M. Chernyshov, P. Denisov, V. Uskov

Practical choice of numerical methods for hyperbolic systems requires the comparison of their
results with analytical solutions of test problems. Solved tasks of voluntary discontinuity disintegra-
tion (Sod and Lax problems) are traditionally used for this goal in gas dynamics. We propose the
test problem of centered Riemann wave disintegration and our parametrical analysis of its solution.
It is non-stationary problem of gas compression caused by accelerating piston. All compression dis-
turbances converge at the singular point and cause the resulting shock wave, contact discontinuity
and reflected shock or centered rarefaction depending of the compression strength and the ratio of
specific heats. Reflected wave is feeble comparing with the resulting shock, and ability to resolve
it characterizes the method qualitatively. Numerical methods must also prevent the ”smearing” of
occurring discontinuities.

Unlike in Lax and Sod problems, mentioned discontinuities grow out of continuous initial data
that allows us to analyze their origin. One also can investigate the different types of boundary
solutions at mobile piston.

To characterize the numerical results, we worked out exact criteria defining the flow parameters
at the every point of centered Riemann wave, speeds of all waves, type of the reflected disturbance,
and conditions for reflection of ”optimal” shock wave of maximal strength. To make the analysis
more accurate for comparison with conservative schemes, we found all integrals [ U;(z)dz where
U = [p, pu,e]” is a vector of conservative variables.

As an example, we studied the results achieved by Godunov, Courant-Isaacson-Rees, Roe, and
Osher methods of the first, second, and fourth order. It turns out that first-order methods resolve
the reflected wave quite unsatisfactory. We had to increase the order to prevent these wrong results.

11



An Adaptive-Grid Least Squares Finite Element Solution for Flow in Layered Soils

T. Chen, C. Cozx, H. Merdun, V. Quisenberry

Groundwater flow in unsaturated soil is governed by Richards equation, a nonlinear convection-
diffusion equation which may be written in the form

2 & o (320

WY Ot 0z 0z
where 0(1)) is the volumetric moisture content, v is the pressure head, and K(v) is the hydraulic
conductivity.

The process is normally convection-dominated, and steep fronts are common in solution profiles.
The problem is further complicated if the medium is heterogeneous, for example when there are
two or more different soil layers. In this paper, the least squares finite element method is used to
solve for flow through 5 layers with differing hydraulic properties. Solution-dependent coefficients
are constructed from smooth fits of experimental data. The least squares finite element approach
is developed, along with the method for building an optimized, nonuniform grid. Numerical results
are presented for the 1D problem. Generalization to higher dimensions is also discussed.

Conditioning and Error Estimaytes in the Numerical Solution of Discrete Matrix
Riccati Equations

P. Petkov, N. Christov, M. Konstantinov

The paper deals with the condition number estimation and computation of residual-based for-
ward error estimates in the numerical solution of the matrix Riccati equations. Efficient, LAPACK-
based condition and error estimators are proposed involving the solution of triangular Lyapunov
equations along with one-norm computation.

Progressively Refining Discrete Gradient Projection Method for Semilinear
Parabolic Optimal Control Problems

1. Chryssoverghi

We consider an optimal control problem defined by semilinear parabolic partial differential
equations, with convex pointwise control constraints. Since this problem may have no classical
solutions, we also formulate it in relaxed form. The classical problem is then discretized by using a
Galerkin finite element method with continuous piecewise linear basis functions in space and a theta-
scheme in time, the controls being approximated by blockwise constant classical ones. We then
propose a discrete, progressively refining, gradient projection method for solving the classical, or the
relaxed, problem. We prove that strong accumulation points (if they exist) of sequences generated
by this method satisfy the weak classical optimality conditions for the continuous classical problem,
and that relaxed accumulation points (which always exist) satisfy the weak relaxed optimality
conditions for the continuous relaxed problem. Finally, numerical examples are given.

12



Identification of a Nonlinear Damping Function in a Thermoelastic System

G. Dimitriu

In this paper we present an approximation framework and convergence results for the identi-
fication of a nonlinear damping function in a thermoelastic system. The approach starts from an
abstract operator formulation consisting of a coupled second order hyperbolic equation of elasticity
and first order parabolic equation for heat conduction. Well-posedness is established using mono-
tone operator theory and nonlinear evolution systems in Hilbert spaces. A family of parameter
identification problems is then defined involving mild solutions. It is assumed that the unknown
damping function to be identified can be described by a maximal monotone operator which acts
on the generalized velocity. The stiffness of the system is assumed to be linear and symmetric.
Some functional techniques are used to demonstrate that solutions to a sequence of finite dimen-
sional (Galerkin) approximating identification problems in some sense approximate a solution to
the original infinite dimensional inverse problem. An example and numerical studies are discussed.

Some Generic Properties of Approximation of Control Problems

T. Donchev

In the paper we consider Bolza problem, given for differential inclusion. Using discrete ap-
proximations when the right-hand side is locally Lipschitz Morduhovich derived necessary optimal
conditions in Euler-Lagrange form. Here we prove that the convergence of the optimal solution of
the discrete problem to the optimal solution of the continuous problem is a generic property.

Filippov - Pliss ILemma and Some Applications (a Survey)
T. Donchev, E. Farkhi

The classical lemma, of Filippov — Pliss claims that:

Let a Caratheodory multifunction F : [0,1] x R" — R"™ with nonempty compact images, and
satisfying the Lipschitz condition Dy (F(t,z), F(t,y)) < L|z — y|, be given. If y(-) is absolutely
continuous with dist(y(t), F(t,y(t)) < f(t) (f(-) is nonnegative and integrable), then there exists a
solution z(-) of the differential inclusion

#(t) € Ft,z(t)), z(0) =g

such that for ¢ € [0, 1]
()~ y(®)] < e (jao — (O] + [ 1(s) ds).

We present some extensions and refinements of this lemma and discuss possible applications.

13



3D Modelling of Diode Laser Active Cavity
N. Elkin, A. Napartovich, A. Sukharev, D. Vysotsky

A menu-driven computer program is developed for numerical simulations of single-mode diode
lasers operating well above threshold. Three-dimensional structures of typical single-mode lasers
with the goal of efficient fibre coupling are considered. These devices have buried waveguides with
high indices of refraction.

A beam propagation method being employed for the wave (Helmholtz) equation leads to the
so-called round-trip operator which is non-linear due to gain saturation effects. Thus, the main
problem for numerical modelling of lasing is the eigenvalue problem for the round-trip operator.
Fox-Li iterative procedure is applied for calculation of a lasing mode.

A large size 3D numerical mesh is employed to discretize a set of equations describing (a) prop-
agation of two waves using Pade approximation, (b) lateral diffusion of carriers within a quantum
well, and (c) thermal conductivity. So, many important non-linear effects are properly accounted
for: gain saturation, self-focusing, and thermal lens.

A serious problem arising for operation far above threshold is the appearance of additional lasing
modes that usually cause degradation in optical beam quality. To calculate the electric current,
at which additional modes appear, the software incorporates a subroutine that calculates a set
of possible competing modes using gain and index variations produced by the oscillating mode,
employing the Arnoldi method for linear eigenproblem.

Results of numerical simulations for typical experimental conditions will be presented.

Preconditioned Methods For The Matrix Exponential

J. van den Eshof, M. Hochbruck

The numerical solution of parabolic equations often involves the numerical approximation of

the action of

efTA
with a vector. The matrix A represents a discretization of an elliptic operator. Often the product
is approximated by using a suitable polynomial approximation, for example using the Lanczos
method. Unfortunately, the degree of the polynomial to achieve a certain precision increases when
the number of spatial grid points is increased.

Inspired by the vast amount of literature on preconditioning of iterative methods, we discuss
in this talk different ideas for incorporating some form of preconditioning into the computation of
the matrix exponential times a vector. A promising idea is to use a nested iteration where in each
step we exploit a preconditioner to solve a suitable subproblem.

14



Operator Splitting Method with Applications

1. Farago

In the modelling of complex time-depending physical phenomena the simultaneous effect of
several different sub-processes has to be described. The operators describing the sub-processes are
as a rule simpler than the whole spatial differential operator. Operator splitting is a widely used
procedure in numerical solution of such problems. The point in operator splitting is the replacement
of the original model with one in which appropriately chosen groups of the sub-processes, described
by the model, take place successively in time. This de-coupling procedure allows us to solve a few
simpler problems instead of the whole one.

In the talk several splitting methods will be constructed (sequential splitting, Strang splitting,
weighted splitting). Using the semigroup context, the order of the operator splitting method and
the convergence of the different splittings will be analyzed for the unbounded operators. We will
discuss both the linear and nonlinear cases. We also examine the effect of the choice of the numerical
method chosen to the numerical solution of the sub-problems in the splitting procedure.

As an important application, we consider the mathematical model of the transport of air pollutants,
effected by the sub-processes of advection, diffusion, deposition, emission and chemical reactions.
Numerical results will be presented in order to illustrate the effect of the choice of different splittings
and numerical methods.

Ant Colony Optimization for Multiple Knapsack Problem and Model Bias
S. Fidanova

There are many NP-hard combinatorial optimization problems (COPs) for which it is imprac-
tical to find an optimal solution. Among them is the Multiple Knapsack Problem (MKP). For
such problems the reasonable way is to look for algorithms that quickly produce near-optimal so-
lutions. Ant Colony Optimization (ACO) is a Monte Carlo method with meta-heuristic procedure
for quickly and efficiently obtaining high quality solutions to complex optimization problems. The
ACO algorithms were inspired by the observation of real ant colonies. An important and interesting
aspect of ant colonies is how ants can find the shortest path between food sources and their nest.
ACO is the recently developed, population-based approach which has been successfully applied to
several NP-hard COPs. One of its main ideas is the indirect communication among the individuals
of a colony of agents, called “artificial” ants, based on an analogy with trails of a chemical sub-
stance, called pheromones which real ants use for communication. The “artificial” pheromone trails
are a kind of distributed numerical information which is modified by the ants to reflect their expe-
rience accumulated while solving a particular problem. When constructing a solution, at each step
ants compute a set of feasible moves and select the best according to some probabilistic rules. The
design of a meta-heuristic is a difficult task and highly dependent on the structure of the optimized
problem. In this paper we investigate the influence of model-based search as ACO. We present
the effect of two different pheromone models for ACO algorithm to tackle the MKP. The results
show the importance of the pheromone model to quality of the solution. The results obtained are
encouraging and the ability of the developed models to rapidly generate high-quality solutions for
MKP can be seen.
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Finite Superelement Method for Elasticity Problems

M. Galanin, E. Savenkov, Yu. Temis

In our work we consider Fedorenko Finite Superelements Method (FSEM) for 3d elasticity
problems with sharp nonhomogenities. We consider 3d composite media with a number of fibres.
Diameters of fibres are greatly smaller then diameter of the whole body. Elasticity properties of
the matrix and fibre are different.

We introduce variational equation which natural Petrov-Galerkin approximation leads to Fe-
dorenko Finite Superelemet Method (FSEM). FSEM is considered as Petrov-Galerkin approxima-
tion of the certain problem for traces of boundary-value problem solution at the boundaries of some
subdomains (superelements). We use Poincare-Steklov operators to construct variational equation
for traces pointed above. Iterative methods of solution of the same problem are well known domain
decomposition methods.

Some numerical results are presented.

This work was partially supported by Russian Fund for Basics Research, project 03-01-00461.

Finite Difference Schemes for Porp-Elastic Wave Propagation

F. Gaspar, F. Lisbona, P. Vabishchevich

We consider the fully dynamic poro-elasticity equations. They constitute a coupled mixed
system (hyperbolic-parabolic), where the unknowns are displacements u(x,t) and pressure p(x,t) :

9%u

p@—,uAu—()\+u)graddivu+gradp:0, x €

gt('prrdiv u) — SAp = f(z,t), z€Q, 0<t<T.
This system describes the wave propagation in an elastic, porous and permeable solid of density p
, saturated by a viscous and slightly compressible fluid. Here A and p , are the Lame coeflicients;
v = nB, with n the porosity and § the compressibility coefficient of fluid; k is the permeability of
the porous medium and 7 the viscosity of the fluid.

For the numerical approximation of this equations, with Dirichlet boundary conditions, we use
finite difference schemes. Energy stability estimates for the space semi-discrete and for the fully
discrete equations are obtained and convergence results are presented. Some numerical calculations
are given to illustrate the theoretical results.
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Discretization Methods with Embedded Analytical Solutions for Convection
Dominated Transport in Porous Media

J. Geiser

Higher order discretisation methods for convection dominated transport are studied. We present
the discretisation of the convection-diffusion-reaction equation based on finite volume methods. The
discretisation is derived with mass transfer for the convection-reaction term with embedded analyt-
ical solution of the mass. The method is based on the Godunovs-method. The exact solutions are
derived for the one dimensional convection-dominant transport case. We use operator-splitting for
the convection-reaction-term and diffusion- term and discretise the diffusion term with an implicit
standard finite volume method. We present the explicit analytical methods for the convection-
reaction term with Laplacian transformation and refer to special cases with equal retardation- and
reaction-parameters. The higher order for this discretisation methods are confirmed with bench-
mark problems based on analytical solutions.

We apply our methods for complex examples in simulations for transported radionuclides in
groundwater flow. Finally we discuss the methods and the convergence results compared with
standard methods.

Element Preconditioning in MIC(0) Solution of Rotated Bilinear FEM Systems

1. Georgiev, S. Margenov

New results about preconditioning of non-conforming FEM systems in the case of mesh anisotropy
are presented. This study is focused on the implementations of rotated bilinear elements, where
algorithms [M P] and [MV] stand for the variants of the nodal basis functions corresponding to
midpoint and integral mid-value interpolation operators. The considered model elliptic problem is
associated with the bilinear form

2
ap(u,v) = Z /a(e)Zumivmide,
i=1

ecwy ¢

where wy, is a decomposition of the computational domain 2 into rectangles denoted by e. The
standard FEM algorithm leads to the linear system Au = f, where the symmetric and positive
definite (SPD) stiffness matrix A is sparse. Our consideration is addressed to the case of large
scale problem. The MIC(0) preconditioned CG method is used for efficient iterative solution of
the linear system.

To get a stable M IC(0) factorization in the general case, we first substitute the stiffness matrix
A by an auxiliary M-matrix. Element preconditioning techniques are implemented at this step. A
local analysis is used to get estimates of the related spectral condition numbers.

This article is specially focused on the construction of optimal auxiliary M-matrix. The problem
is formulated in the following general setting: for a given SPD matrix A we want to find SPD M-
matrix B such that the condition number of the generalized eigenvalue problem,

Au = ABu

is minimal. A locally optimized construction is presented. The included numerical tests well
illustrate the behavior of the analyzed algorithms.
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Restarted GMRES with Inexact Matrix—Vector Products

M. van Gijzen, G. Sleijpen, J. van den Eshof

There are many classes of linear problems for which the matrix—vector product must be cal-
culated via an expensive approximation method. An important question is to what accuracy the
inexact matrix—vector product must be approximated without compromising the final accuracy of
the solution. In recent years this question has been studied for Krylov subspace methods by a num-
ber of authors. The general conclusion is that the accuracy to which the matrix—vector product is
calculated can be decreased when the iterative process comes closer to the solution. This is usually
called a relaxation strategy.

In the talk we will discuss startegies for controlling the accuracy of the matrix-vector products
for restarted GMRES. Restarted GMRES is closely related to a nested method with Richardson’s
method as outer iteration, and unrestarted GMRES as inner iteration. It is well known that for
unrestarted GMRES a relaxation strategy can be used. We will show, however, that at the moment
of restart, a suitable strategy depends on the way the residual is calculated. If the residual at the
moment of restart is updated via a recursion, a relaxation strategy can be employed. However, if
the residual is calculated directly from the right-hand side and the current approximation for the
solution, the accuracy of the matrix—vector product must be increased when the iterative process
comes closer to the solution. Since restarted GMRES can be seen as a nested method, significant
further savings can be obtained by lowering the accuracy in the inner loop.

Multiple Scale Procedure in Laplace Transform Space for Solution of Weakly
Nonlinear Wave Equation

A. Golbabai

In this paper we formulate a Laplace-transform multiple scale expansion procedure to develop
asymptotic solution of weakly non-linear partial differential equation. The method is applied to
some general nonlinear wave and diffusion equations.

Order Reduction of Multi-scale Differential Inclusions

G. Grammel

In this paper we consider multi-valued differential equations of the form

€ F(z,y,2)
62) E G(l', y7 2)7
dez € H(z,y,z),
where §,¢ > 0 are small parameters reflecting different time scales. We present conditions under

which a re-iterated averaging procedure leads to a reduced order system representing the situation
that both perturbation parameters vanish. Approximation rates are given as well.
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Computing eigenvalues of the discretized Navier-Stokes model by the generalized
Jacobi-Davidson method

G. Hechme, M. Sadkane
In this work the stability analysis of a 3D Navier-Stokes model for incompressible fluid flow is

considered. Investigating the stability at a state leads to a special generalized eigenvalue problem
whose main part of spectrum is computed by Jacobi-Davidson QZ algorithm.

A Modified Spectral Method for Stiff ODEs
M. Hosseini

It is well known that the eigenfunction of certain singular Sturm-Liouville problems allow the
approximation of function in C*[a, b|

where truncation error approaches zero faster than any negative power of the number of basic
functions used in the approximation, as that number (order of truncation N) tends to infinity. This
phenomenon is usually reffered to as spectral accuracy. The accuracy of derivatives obtained by
direct, term-by-term differentiation of such truncated expansion naturally deteriorates, but for low-
order derivatives and sufficiently high-order truncations this deterioration is negligible, compared
to the restrictions in accuracy introduced by typical difference approximations.

Here, a modified spectral method is introduced which it is well applied for ODEs with non-
analytic or impulse solution. Furthermore, with providing some examples, the aforementioned
cases are dealt with numerically.

Adaptive Filters Viewed as Iterative Linear Equation Solvers

J.Husoy

Adaptive filtering is an important subfield of digital signal processing having been actively re-
searched for more than four decades and having important applications such as noise cancellation,
system identification, and telecommunications channel equalization. The various adaptive filtering
algorithms that have been developed have traditionally been presented without a unifying theoret-
ical framework: Typically, each adaptive filter algorithm is developed from a particular objective
function whose iterative minimization gives rise to the various algorithms. This approach obscures
the relationships, commonalities and differences, between the numerous adaptive algorithms avail-
able today. The objective of the present paper is to provide a novel unifying framework, briefly
summarized in the next paragraph, based on stationary methods for the solution of iterative linear
equations. It is believed that the new framework, based solely on numerical linear algebra, has the
potential to further and unify the theory of adaptive filtering.

The highlights of our contribution can be summarized as follows: First we motivate a data
dependent and time varying linear equation system

X (n)W (1) X" (n)h(n) = X(n)W (n)d(n), (1)

where X(n) is a data dependent matrix of dimension M x L, where, — depending on the situation,
L may be smaller, equal to, or larger than M. W(n) is a weighting matrix, d(n) is a vector of
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data termed the desired signal, and h(n) is the time varying coefficients of the adaptive filter. By
postulating a generic matrix splitting of the coefficient matrix X (n)W(n)X7”(n), we show that
all classical and some new adaptive filter algorithms can be viewed as simple special cases of one
simple iteration for the update of h(n). In addition to unifying and simplifying the derivation of
adaptive algorithms, and providing a framework for the development new algorithms, we show how
our theory facilitates a unified and common analysis of the properties of the various algorithms.

All the above is cast in the language of numerical linear algebra. This may facilitate future con-
tributions to adaptive filtering from researches with other backgrounds than electrical engineering
who, to the present time, have dominated the field.

Numerical Modeling of Laser Generation Propagation in the Atmosphere

1. Iliev, Gocheva-Ilieva, S. Georgieva

The application of lasers for treatment of materials incites a great amount of practical and
theoretical problems. Due to the coupling of power into the focal spot an optical discharge arises
which leads to partial absorption of radiation and low quality of laser beam. In this paper the
conditions of appearance of a such optical discharge for the impulsive ruby laser with photon energy
hw = 1,78 eV are investigated. The main object was the determination of basic parameters: energy,
wavelength and front increment of the laser impulse in the way that the loss of laser power is small.
The presented model is based on the determination of the electron energy in the area of the focal
spot as a solution of quasilinear heat conductivity problem with the equation of the form

or
pep oy = AT+ 1p

where p is air density, ¢, is specific heat capacity, A = A(T") is heat conductivity coefficient, I is
laser radiation intensity and pu = p(7') is air absorption coefficient. For numerical solving of the
problem an implicit difference scheme of order of accuracy O(7 + h?) in spherical coordinates was
applied. The calculations were carried out many times in order to establish the critical values of the
electron energy while an optical discharge during the period of one laser impulse arises. Numerical
experiments for different values of the laser parameters were explored too. At fixed values of the
energy impulse some laser characteristics which guaranteed minimal loss of radiation were found.
The obtained results are in good agreement with the experimental data. They can be used for
further numerical investigation of the problems concerning the interaction of laser beam with the
material and the improvement of the total efficiency of laser generation.
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A Smooth Approximation for the Solution of a Special Non-Linear Second-Order
Baundary-Value Problems Based on non Polynomial Splines

S. Islam, I. Tirmizi

Numerical Range of Weighted Composition Operators
R. Jabbarzadeh

In this paper we will consider the weighted composition operator W = uC,, between two differ-
ent LP(X, ¥, 1) spaces. We characterize the functions v and transformations ¢ that induce weighted
composition operators between LP-spaces by using some properties of conditional expectation op-
erator, pair (u,p) and the measure space (X, %, u). Also, numerical rage and Fredholmness of these
type operators will be investigated under certain conditions.

Finite Difference Approximation Of An Elliptic Interface Problem With Variable
Coefficients

B. Jovanovié¢, L. Vulkov

Interface problems occur in many applications in science and engineering (heat and mass trans-
fer in composite materials, multi—phase flows, chemical reactions theory, colloid chemistry etc.).
Mathematically, interface problems usually lead to differential equations whose input data have
discontinuities across some interface and the solution or its derivatives satisfy some conjugation
conditions on the interface. Many numerical methods designed for problems with smooth solutions
do not work efficiently for interface problems.

In the present work we investigate an general elliptic interface problem in rectangular domain,
crossed by curvilinear interface. By suitable change of variables problem is transformed into anal-
ogous one with rectilinear interface. For the numerical solution of transformed problem a finite
difference scheme with averaged right—hand side is proposed. Convergence rate estimate in discrete
W4 norm, compatible with the smoothness of data, is obtained.
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Immersed Interface Method via Rothe Time Discretizacion for a Diffusion Equation
with Local Reactions

J. Kandilarov

A technique combined the Rothe method with the immersed interface method (IIM) of R. Lev-
eque and Z. Li (SIAM J. Numer. Anal., V31,1994) for computation of numerical solution of a
diffusion equation with nonlinear localized chemical reaction is developed. The equation is dis-
cretized by Rothe’s method and elliptic equations with nonlinear singular source occur. The space
discretization on each time level is performed by the IIM. The 1D and 2D numerical experiments
are presented.

Using Hermite-Type 3-1 Elements for Solving Fredholm Integral Equations of the
Second Kind

M. Karams

In this paper, we use the Petrov-Galerkin method for solving Fredholm integral equations of
the second kind on [0,1] that the trial space is piecewise Hermite-type cubic polynomials and the
test space is piecewise linear polynomials and for showing efficiency of method, we use numerical
examples.

High Accuracy Algorithms for Solving the Bound States of Two-dimensional
Schroedinger Equation

M. Kaschiev, M. Dimova

The proposed algorithms for solving the bound states of two-dimensional Schroedinger equation
are based on the reducing of the given problem to solving the spectral problem for a system of or-
dinary second-order differential equations. Two reducing methods are used — the Bubnov-Galerkin
method and the Kantorovich method. The high-order approximations of the finite element method
are applied to the numerical solution of one-dimensional eigenvalue problem. Finite elements of
order p =1,2,...,10 are implemented. As an example the bound states of the hydrogen atom in
a strong magnetic field are calculated with an accuracy, approximately 1072 a.e.
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AN ECONOMIC METHOD FOR THE EVALUATION OF THE VOLUME
POTENTIAL

Natalia Kolkovska

An approximation to the volume integral with a logarithmic kernel is obtained as a solution to
a finite difference scheme. Exact integral representations of the discrete Laplacian are used in order
to construct the right-hand side. The error estimates are obtained for functions in some Besov
spaces.

Since the right-hand side of the discrete Laplacian equations includes evaluation of some inte-
grals, appropriate quadratures for their calculations are used.

Nonlinear Optimal Control of Power System Via Approximate Solution of
Hamilton-Jacobi-Bellman Equation Schroedinger Equation

M. Kharaajoo

In this paper, nonlinear H, control strategy is applied to speed control of permanent magnet
synehronous motors. In order to obtain the nonlinear H, control law, some inequalities so-called
Hamilton-Jacobi-Isaaes (HJI) should be solved. It is so difficult, if not impossible, to find an exact
closed solution of HJI inequalities. However, there are some approximate solutions. One of these
possible solutions is the use of Taylor Series expansion that will be used in this paper. Simulation
results show better performance for higher order approximation controller that of lower order one
in response to load torque variations and mechanical parameter uncertainty.

Higher Order Approximations of Smooth Control Systems

N. Kirov, M. Krastanov

A new approach for numerical approximation of trajectories of a smooth affine control system is
proposed under suitable assumptions. This approach is based on expansion of solutions of systems
of ordinary differential equations by Volterra series and allows to estimate the distance between
the obtained approximation and the true trajectory.
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A Property of Farey Tree
L. Kocié, L. Stefanovska

The Farey tree is a binary tree containing all rational numbers from [0, 1] in ordered way. It is
constructed hierarchically, level by level, using the Farey mediant sum. Some numerical properties
of the set of points (p/q,p + q) and associated interpolating functions, where p/q belongs to the
k-th level of the Farey tree are investigated.

Numerical Solution of Semilinear Parabolic Problems Using a Two-Grid Method

M. Koleva

A technique combined the Rothe method with two-grid (coarse and fine) algorithm of Xu [J.
Xu, 1994] for computation of numerical solution of nonlinear parabolic problem with dynamical
boundary conditions is presented. For blow-up solutions we use a decreasing variable step in time,
according to the growth of the solution. We give theoretical results, concerning convergence of the
numerical solution to the analytical one. Numerical experiments, presented below, demonstrate
the accuracy of the algorithm for computation of bounded and unbounded solutions of the model
problem.

Sensitivity Analysis of Generalized Lyapunov Equations

M. Konstantinov, P. Petkov, N. Christov

The sensitivity of the generalized matrix Lyapunov equations relative to perturbations in the
coefficient matrices is studied. New local and non-local perturbation bounds are obtained.

An Algorithm to Find Values of Minors of Weighing Matrices

C. Kravvaritis, E. Lappas, M. Mitrouls

A (0,1, —1) matrix W = W (n, k) of order n satisfying WW? = kI, is called a weighing matrix
of order n and weight k or simply a weighing matriz. We consider the matrix W (n,n — 1). This is
a matrix of order n, with one zero in each row and column and other entries +1, where the inner
product of any distinct pair of rows or columns is zero. For the W (n,n — 1) since WW7T = (n—1)I
we have that det(W) = (n—1)2. Write W (j) for the absolute value of the determinant of the j x j
principal submatrix in the upper lefthand corner of the matrix W. In the present paper we calculate
the maximum minors W(n), W(n —1) and W(n — 2). We explore the use of a variation of a clever
proof used by combinatorialists to find the determinant of a matrix satisfying AAT = (k—\)I+\J,
where [ is the v x v identity matrix, J is the v X v matrix of ones and &k, A are integers to simplify
our proofs. The determinant is k + (v — 1)A\(k — \)*~L.

It is known that W is equivalent under permutation of rows and columns and multiplica-
n+42

tion of any row or column by -1 to a matrix, U, satisfying U7 = (—1)%U . Using this fact, if

we consider the first three rows of W we prove a distribution type lemma for weighing matrices
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W (n,n —1) concerning the number of columns starting with (1,1,1)% or (-1,-1,-1)T, (1,1, -1)T
or (—1,—1, D)7, (1,-1,1)T or (=1,1,-1)7, and (1, -1, —1)7 or (—1,1,1)”. Using this distribution
lemma and the orthogonality properties of the weighing matrices, we develop an algorithm com-
puting the (n — j) x (n — j) minors of W (n,n — 1). This algorithm can be used for the study of
the growth problem for weighing matrices.

On an Stable Solution for a Cauchy Problem for Laplace Equation with Inexact
Initial Conditions on an Approximately Defined Boundary

E. Laneev, M. Mouratov, E. Zhidkov

The paper considers an inverse problem stated in terms of the model describing stationary
temperature distribution in a half-infinite rectangular cross section cylinder containing heat sources.
On a surface S bounding the cylinder heat exchange with the surrounding environment obeys
Newton’s law. If we are given only temperature distribution on the surface - not knowing the sources
distribution function - then inside the harmonicity domain we obtain the problem structurally
similar to Cauchy problem for Laplace equation. Convergence theorem stating that in case of an
approximately defined surface the stable approximate solution converges uniformly to the exact
one is proved.

Numerical Methods for Moving Interface Problems and Applications

Z. Ly

Moving boundary/interface problems are very challenge both theoretically and numerically.
In this talk, I will introduce couple of examples including electrical migration, Stefan problems
involving unstable crystal growth, and Hele-Shaw flow to summarize the challenges in the theory
and the numerics. Then I will explain the numerical methods which I have employed to solve those
problems.

One of the main components of the numerical methods is the immersed interface method used
to solve the governing differential equations involving interfaces and discontinuities. Some recent
developments including a fast immersed method for solving Poisson problems with large jumps, the
weighted least squares interpolations technique, and the ADI method for parabolic equations will
be briefly discussed.

Another major component in solving moving interface problems is how to update the interface.
In our approach, the level set formulation is used because of the simplicity and robustness for
problems involving topological changes and high dimensions. I am going to discuss some issues
about how to use the level set method without affecting second order accuracy of the immersed
interface method.

Finally, some numerical results and simulations will be presented with some physical explana-
tions.
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Computer Realization of the Operator Method for Solving of Differential Equations

B. Liepa, Z. Navickas, R. Marcinkevicius

Using operator computational method, exact descriptions of the phenomenon under investi-
gation are obtained in the form of various operator expressions. So, qualitative object analysis
results, obtained by replacing expressions at hand with slightly different structures (most often,
with functional series), are available. The use of modern computers facilitates derivation of various
digitized realizations of the said operator expressions.

In this case, the sought—for is written in the form of an operator series.

The solution y(z; s1, s2, ..., Sn—1,v) of a differential equation
-1
yl(fn) = P(.’L‘, Y, y;wyga R 7Z/§:n ))7 Yy (U; 51,82, .- >S7L—1;v> = 815 (y ($7 51,82,++.,5n—1, U)); |3U=’U = 82,
-1

(y (%, 51,52y, Sn—lﬂ)))g ’JI:U = 83,--+, (y (LU, 51,82y, 8n—17v))§7n ) ’x:v = Sn-1
can be presented in the form

+oo (:rfv)k
Y(T;51,82, - -+, Sp—1,V) = kZOpk (81,825, 8n-1,0) 7,

k

(81,82, ..., $n—1,v) = (Dy + $2Ds, + 83Dgy + ...+ $p—1Ds, 5 + P (v,81,82,...,8n-1))" 1, where
P(x,y,y., 9, ..., yg(cnfl)) is an arbitrary polynomial or a function and D is a differential operator.

When using computers, we restrict ourselves with an operator polynomial.

Taking polynomials of a sufficiently high degree one can find out and analyse various properties of
the differential equations (systems) under investigation. In solving a more complicated differential
equation (or, a system of differential equations), by means of two independent methods (for instance,
numerical and operator), we avoid errors, and higher accuracy is obtained.

In solving ordinary differential equations, we escape problems associated with evaluation of sym-
bolic differential expressions. The calculation time is made acceptable using (for parallelization) a
particular computer network. So, the symbolic differentiation as well as graphical information is
realized using Maple system, whereas the computer network is explored applying MPI tools.

Nonconvex Numerical Approach to the Seismic Soil-Pipeline Interaction under
Instabilizing Effects

A. Liolios, K. Liolios, S. Radev, Y. Angelov

A numerical approach is presented for the unilateral contact problem of the seismic soil-pipeline
interaction under second-order instabilizing effects. The problem is considered as an inequality one
of structural engineering [1,2]. So, the nonconvex unilateral contact conditions due to tensionless
and elastoplastic softening-fracturing behaviour of the soil as well as due to gapping are taken into
account. The numerical approach is based on a double discretization, in space by FEM and /or
BEM and in time, and on mathematical programming. So the number of the problem unknowns is
significantly reduced and a nonconvex linear complementarity problem is solved in each time-step.
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Parallel Performance of a 3D Elliptic Solver

I. Lirkov

It was recently shown that block-circulant preconditioners applied to a conjugate gradient
method used to solve structured sparse linear systems arising from 2D or 3D elliptic problems
have good numerical properties and a potential for high parallel efficiency. The asymptotic esti-
mate for their convergence rate is as for the incomplete factorization methods but the efficiency of
the parallel algorithms based on circulant preconditioners are asymptotically optimal. In this paper
parallel performance of a circulant block-factorization based preconditioner applied to a 3D model
problem is investigated. The aim of this presentation is to analyze the performance and to report
on the experimental results obtained on shared and distributed memory parallel architectures. A
portable parallel code is developed based on Message Passing Interface (MPI) and OpenMP (Open
Multi Processing) standards. The parallel complexity of the algorithms is analyzed. The performed
numerical tests on a wide range of parallel computer systems clearly demonstrate the high level of
parallel efficiency of the developed parallel code.

Implicit Technique and Order Selection in Generalized Rayleigh Quotient Shift
Strategy for QR Algorithm

Y. Liu, Z. Su

QR algorithm for eigenproblems is often applied with single or double shift strategies. To save
computation effort, double implicit shift technique is employed. Watkins and Elsner introduced
a generalized Rayleigh quotient shift strategy for higher-order shifts. In this paper, we give a
generalization of the double implicit shift technique for this higher-order strategy, which includes
only the computation of the first column of the shifted matrix. A heuristic criterion is given for
selecting the optimal shift order and is verified by numerical experiments.

Accuracy eEstimates of Difference Schemes for Quasi-Linear Elliptic Equations with
Variable Coefficients Taking into Account Boundary Effect

V. Makarov, L. Demkiv

While solving the elliptic equations in the canonical domain with the Dirichlet boundary condi-
tions by the grid method, it is obviously, that boundary conditions are satisfied precisely. Therefore
it is necessary to expect, that close to the domain boundary the accuracy of the corresponding dif-
ference scheme should be higher, than in the middle of the domain. The quantitative estimate
of this boundary effect first was announced without proves in 1989 in the Reports of the Bul-
garian Academy of sciences by the first author. There accuracy of the difference schemes for
two-dimensional elliptic equation with variable coefficients in the divergent form has been investi-
gated.

In this paper ‘weight’ a priori estimates, taking into account boundary effect, for traditional
difference schemes, which approximate, with the second order, first boundary problem for quasi-
linear elliptic type equation, which main part has a not divergent form, have been obtained.

The paper ends with numerical experiments, which testify to unimprovement, by the order, of
the received ‘weight’ estimates.
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Using Wavelet Petrov - Galerkin Method for Solving Integral Equations of the
Second Kind

K. Maleknejad

WiIn this paper, We use wavelet Petrov-Galerkin (WPG) method based on discontinuous or-
thogonal multiwavelets for solving Fredholm integral equations of the second kind that yields linear
systems having numerically sparse cofficient matrices and their condition numbers are bounded.
At least for showing efficiency of method, we use numerical examples.

Parameter estimation of Si Diffusion in Fe Substrates after Hot Dipping and
Diffusion Annealing

B. Malengier

In this paper a general model is developed for the simulation of one dimensional diffusion
annealing. Our main interest is determination of the diffusion coefficient from measured values
at discrete space-time points within the sample. The method is based on a suitable reduction
of the PDE to a system of ODEs by a second order finite difference space discretization. The
inverse problem is solved by implementation of the Levenberg-Marquardt method. This allows the
estimation of the parameters and the determination of Cramer-Rao lower bounds.

Stochastic Optimization of Tuned Mass Damper to Reduce Seismic Vibration

F. Manju, I. Anam

The applicability and use of passive and active mechanisms to control structural vibration due
to dynamic loads like wind load and seismic vibration has been studied for many years. Among
the various control devices, the use of the so-called optimized Tuned Mass Damper (TMD) is often
considered to be a suitable option. The optimization of the TMD for seismic vibration is based
on idealized spectra for the ground acceleration assuming it to be harmonic or White Noise, none
of which truly represents the seismic vibration. Therefore the optimized properties of the TMD
derived this way may not represent the best option in most practical situations, which depend
on specific structural and site conditions. This paper studies numerically the suitability of the
so-called optimized TMD in reducing the vibrations of different building structures subjected to
real seismic ground motions like the El Centro (USA, 1940) and Kobe (Japan, 1995) earthquakes.
The numerical simulations are carried out using probabilistic analysis, i.e., obtaining the expected
response spectrum in the frequency domain and comparing with results from the Monte Carlo
simulations in the time domain. The agreement obtained between the two results is found to
be excellent, which validate the numerical model in the frequency domain. Thus validated, the
frequency domain method is used to extend the study to obtain the true optimized TMD properties
for the particular site conditions for El Centro and Kobe earthquake and the results are compared
with the structural vibrations for the idealized optimizations
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Numerical Design of Optimal Active Control for Seismically-Excited Building
Structures

D. Marinova, V. Marinov

Several control techniques have been recently developed as a possible way of reducing the
vibrations of civil engineering structures during seismic excitations or strong wind gusts. Based
on system control theory active control systems have been promoted requiring external energy for
their operation on the building structures. Each structural control system should have appropriate
optimal control algorithm suitable to the system’s characteristics and its external loads. This paper
presents a dynamic model of active control system for seismic-resistant building structures. A linear
quadratic optimization problem is formulated. Two optimal performance indexes are considered.
The first criterion is an integral index representing the balance between structural response and
control energy and leads to control forces proportional to the structural response. The second
criterion is a discrete time-dependent performance index in which the optimality is achieved at
each instant time and leads to optimal control forces that are proportional to the time step and
the structural response. For the later criterion the influence of the time step on the algorithm is
investigated. The maximum structural response and maximum active control force versus control
design parameter are studied. Numerical examples illustrate the effectiveness of the proposed
algorithms in reducing structural response for an active control building under earthquake and
wind excitations.

Additive Difference Schemes for Heat Conduction Equation with the Third Kind
Boundary Condition

R. Martsynkevich

In the present talk, local one-dimensional (LOD) difference schemes of the second order of
approximation and accuracy in space variables for multi-dimensional heat conduction equation
with boundary conditions of the third kind are constructed by means of the approximation with
respect to the off-designed (nonnodal) point Z; = (z;—1 + =; + x;+1)/3 in the half-integer nodes on
the nonuniform grids in the multi-dimensional rectangular domain. The a priori estimates of the
difference solution in the uniform norm C' are obtained by means of the grid maximum principle.
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Stability of Finite Difference Schemes for Nonlinear Time-Dependent Problems

P. Matus

In the present talk, a priori estimates of the stability with respect to the initial data of the
difference schemes approximating quasi-linear parabolic equations and nonlinear transfer equation
have been obtained. The basic point is connected with the necessity of estimating all derivatives
entering into the nonlinear part of the difference equations. These estimates have been proved
without any assumptions about the properties of solution of the differential equations and depend
only on the behavior of the initial and boundary conditions. As distinct from linear problems, the
obtained estimates of stability in the general case exist only for the finite instant of time ¢ < ¢g
connected with the fact that the solution of the Riccati equation becomes infinite. For example,
for the nonlinear transfer equation this time typ = Huf)Hal is connected with the behavior of the
first derivative of the initial function and in the case of uf(z) < 0 fully coincides with the moment
of the shock wave generation (gradient catastrophe). For the difference scheme approximating the
quasi-linear parabolic equation the corresponding time tg = Hu{)’Hal is already associated with the
behavior of the second derivative of the initial function and coincides with the time of the exact
solution destruction (heat localization in the peaking regime). A close relation between the stability
and convergence of the difference scheme solution is shown. Thus, not only a priori estimates for
stability have been established, but it is also shown that the obtained conditions permit exact
determination of the time of destruction of the solution of the initial boundary value problem
for the original nonlinear differential equation in partial derivatives. In the present talk, concrete
examples confirming the theoretical conclusions are given.

Computing Transitive Closure Problem on Linear Systolic Array

1. Milovanovié, E. Milovanovi¢, B. Randjelovié¢

A directed graph G is a doublet G = (V, E), where V is a set of vertices and F is the set of
direct edges in the graph. The graph which has the same vertex set V', but has a directed edge from
vertex v to vertex w if there is a directed path (of lenght zero or more) from vertex v to vertex w
in G, is called the (relexive and) transitive closure of G. A graph G = (V, E) can be represented as
an adjacency matrix A, whose elements a;; = 1 if there is an edge directed from vertex i to vertex
J, or = j; otherwise a;; = 0. The transitive closure problem is to compute the adjacency matrix
AT for GT = (V, E™) from A. Transitive closure is a technique for solving combinatorial problems
thet are used in wide variety of applications in mathematics, computer science, engineering and
business.

Computational tasks can be conceptually classified into two families: compute-bound computa-
tions and I/O-bound computations. For example, matrix multiplication represents compute bound
computation. On the other hand, adding two matrices is I/O-bound task. A transitive closure
problem falls into the category of compute-bound tasks. Speeding-up a compute-bound compu-
tations can often be accomplished in a relatively simple and inexpencive manner, that is by the
systolic approach, without increasing I/O requirements. Systolic arrays (SA) are high-performance,
special purpose architectures typically used to meet specific application requirements or to off-load
computations that are especially taxing to general purpose computers.
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In this paper we design a linaer systolic array for computing transitive closure for a given graph.
The obtained array has optimal number of processing elements (PE) with respect to a problem size
and the execution time is minimized for that number of PEs.

A Method Which Finds Maxima and Minima of a Multivariable Function Applying
Affine Arithmetic

S. Miyajima, M.Kashiwagi

Fujii et al. proposed the method (Fujii’s method) which finds maxima and minima of a multi-
variable function y = f(x1, 2, -, xy) in the m dimensional region (the box) X applying interval
arithmetic (IA). In this method, the maxima and the minima are calculated with guaranteed ac-
curacy by means of dividing X into subregions recursively and bounding the ranges of f in the
each subregion applying IA and discarding the subregions which don’t possess the possibility of
including the point that the maximum (minimum) value occurs.

However, this method possesses the serious problem that the large calculating cost is needed.
To overcome this problem, more subregions have to be discarded in initial stage. One of the way
which discard more subregions in initial stage is to overcome the overestimaton often observed in
IA.

The purpose of this paper is to propose the new method which finds maxima and minima of a
multivariable function applying affine arithmetic (AA). AA is a variant of TA and is able to overcome
the overestimation. In this method, the ranges of f in the subregions are bounded applying AA
instead of standard IA. Moreover, two algorithms are introduced into the new method to discard
more subregions in initial stage. Outlines of these algorithms are as follows:

algorithml
Lower bound (upper bound) of the maximum (minimum) value is pulled up (down) by utilizing
the shape of the range boundary of f when AA is applied (in AA, the ranges are bounded in
the shape of “linear approximation + error term”). By this operation, more subregions are
able to be discarded than the Fujii’s method.

algorithm?2
The subregions are narrowed by utilizing the shape of the range boundary of f when AA is
applied. Namely, the parts of the subregions are able to be discarded while they are not able
to be discarded in the Fujii’s method.

By applying the new method, the maxima and the minima, which are not able to be found in
practical time when the Fujii’s method is applied, are able to be found efficiently. And this paper
includes some numerical examples to show the efficiency of the new method.
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B-Spline Approximation of Set-Valued Functions with General Images
A. Mokhov, N. Dyn

We present in this paper some initial investigations of the approximation of set-valued func-
tions with general compact images in R™ using B-splines. Linear operations on sets are usually
understood in Minkowski sense (algebraic sum). If, however, the values of a set-valued function are
nonconvex, then the approximating methods may fail. Therefore, in order to obtain an approximant
the usual Minkowski average, which is appropriate for set-valued functions with convex images, is
replaced by the metric average. We show that this approach can approximate multifunctions with
general compact images in R" in the Hausdorff metric.

Use of Richardson’s Extrapolation in the Study by Finite Difference Method of
Bending Thin Plates

1. Mura

The ’deferred approach to the limit’ method, suggested by Richardson, is extremely useful
when there is a reliable estimate of the discretization error as a function of the mesh lenght. It is
of dubious value however near curved boundaries, near corners with interior angles exceeding 180
degrees, and near boundaries on which specified function values are not smooth.

Results obtained in the study of bending thin plates by F.D.M. are presented in the work.

The Conservative Finite-Difference Scheme for Solving the Dynamical Problems of
the Theory of Elasticity in Two-dimensional Regions with an Arbitrary Shape

V. Patiuc , R. Galina

The numerical method for solving the dynamical problems of the theory of elasticity in two-
dimensional regions that have the shape of arbitrary curvilinear quadrangle is proposed. The
developed method consists of two main stages. The first stage of the method consists in numerical
modeling of the conformal image of the arbitrary quadrangle region in the Cartesian co-ordinates
Ozxy to the square in co-ordinate system O&n. Towards this end two problems for Laplace’s equa-
tions with mixed boundary conditions (that include the values of unknown functions and their
derivatives) are formulated in £n co-ordinates. These problems are efficiently solved by finite dif-
ference method since the definitional domain of the solution is a square. As the output of such
solutions we obtain the discrete harmonic functions x = x(£n), vy = y(&n) and inverse functions
& =&(x,y), n = n(x,y) that determine desired conformal image. The obtained relationships allow
us to construct the orthogonal difference grid in quadrangle region in Oxy co-ordinates. The second
stage of the method consists in formulation of the equations of the theory of elasticity in arbitrary
orthogonal co-ordinate system. The equations contain Lame’s coefficients H,% = g, kK = 1,2,
where the components of the metric tensor gpi are expressed by means of difference derivatives
from discrete functions x = z(&n), y = y(£n). In order to create the conservative difference scheme
we use four types of difference grids: with integer, half-integer and mixed indexes. The application
of such grids makes it possible to use central difference derivative that gives rise to getting the
finite difference scheme with second order of accuracy. When creating the difference scheme we
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use the discrete analogue of potential energy, the transformation of which leads to receiving of
self-conjugate positively defined difference operator and the approximation of boundary conditions
that provides this self-conjugacy. So the difference scheme created in this manner is conservative
as the fulfillment of the energy conservation law on the discrete level is an algebraic consequence
of the obtained equations. Thus, the explicit three-layered difference scheme was constructed. By
means of the a priori estimate method it was obtained the condition of stability of this scheme,
that contains the physical and geometrical parameters of the initial problem. The condition of
stability and the second order of approximation provide the convergence of the numerical solutions
to the exact solutions of the differential problem with the second order of accuracy. The developed
numerical method was applied for solving the problem of concentration of stresses in the vicinity
of the elliptic hole and in vicinity of circular cylinder situated close to the boundary of half-space.

Fast Algorithm for Solving Fuzzy Relational Equations
K. Peeva, Y. Kyosev

We present two algorithms (conventional and fast) for solving fuzzy relational equations (FRE)
ReS=T

over [0, 1], for one of the unknown relations on the left side, where R C X x Y and S CY x Z are
fuzzy relations, their composition is the fuzzy relation ReS C X x Z, and for all pairs (z,2) € X x Z,

(R 5)(x,2) = max(min(R(z,y), 5y, 2)))-

Traditional linear algebra methods (Gaussian elimination), are not valid when solving FRE —
for the operations max and min the inverse elements do not exist. Acknowledging the apparent
inevitability of NP-hardness of the problem, we obtain as much improvements over straightforward
exhaustive search as possible. We simplify the computation by pruning unnecessary paths in the
search process. In this manner we reduce substantially the time complexity by making a more
clever choice of the objects over which the search is performed.

The proposed algorithms are realized in MATLAB environment and they find the complete solu-
tion set. They may be implemented on the multiprocessor machines, realizing parallel computation
of branches. The implementations in knowledge base engineering are given.
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On Analytic Iterative Functions For Solving Of Nonlinear Equations

M. Petkov, G. Nedzhibov

An approach for establishing the convergence of iterative methods for solution of nonlinear (real
or complex) equations is proposed.
Let we consider the system

21 =¢1(2), 22 = @2(2), -y 20 = n(2) or z=0(2),

where z = (21, 22, ..., 2,) € C"- the n-dimensional vector space, where {z;} are complex numbers.
Let o = (a1, e, ..., ay) be a fixed point of ¢, i.e. @ = p(«), localized in C' = {z = (21, 22,...,2p) :
|zs — as| <1, r >0}, ps(z) are analytic in C' and

ak‘PS(O‘)

02110247 ... Ozp" FO Rtk t ki =ksp-l

and at least for one combination (s;p1,p2,...,pn) we have

P ps(a)
=0,p1+p2+...+pn=p>1.
0210282 . Oz "

Then the following result holds:
If zp € C and sufficiently close to «, then the iteration process zxy1 = ¢(zx), k& = 0,1,2,...,
converges to « for k — oo with order of convergence p.

We use this result to give new and simpler proofs for convergence of some known iterative
processes. The same is shown for some new iterative processes too.

Numerical Modelling of the One-phase Stefan Problem by Finite Volume Method

N. Popov, S. Tabakova, F. Feuillebois

This paper is concerned with the problem of initially supercooled droplets immediately freezing
after impact on solid surfaces. The droplets are assumed to be axisymmetrical with different shapes
and are exposed to an ambient gas with constant thermal properties. Their freezing is modelled as
a one-phase Stefan problem given in its enthalpy formulation. The droplet geometry is described by
non-orthogonal body fitted coordinates, which are numerically generated by an elliptic generation
system. The heat transfer equation written in these coordinates is solved using the finite volume
method with linear interpolation. Third order (viz. mixed) boundary conditions are enforced
between the droplet and the substrate surface on one hand and between the droplet and the ambient
gas on the other hand, but with different parameters. The first order boundary conditions (viz.
Dirichlet boundary conditions for the temperature) are also considered as a particular case. For
first order boundary conditions with the ambient gas, the numerical results for the simple case of a
spherical droplet touching a surface are well validated by a former 1D asymptotic analytical solution.
In general, the evolution in time of the interface between the frozen part and the remaining liquid
has a complicated behavior, for different combinations of the boundary conditions parameters. For
all considered droplet shapes, the proposed method of solution is faster than a similar one using the
ADI technique of a fully implicit conservative finite-difference scheme in cylindrical coordinates.
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Numerically Study of Tooth Shape from Theoretical Exactly Epicycloidal Gears
P. Popovici, C.Cismas
In this paper it is presented the algorithm and calculus programme for to determine the tooth

shape of theoretical exactly epicycloidal gears. The tooth shape calculus it is usefully for numerically
study of gears, toothing tools and checking.

Numerical Modelling of the Copying and Rolling Gear-Cutters, for External Rotor
of the Truninger System Pumps

P. Popovici, C.Cismas
High capacity pumps Truninger system, have parts of high wearing such as external rotors with

internal teeth. The production of spare parts needs complicated shape tools. The algorithm and
calculus programme conceived by the authors it‘s useful for the production of these tools.

On the Normwise Backward Error of Large Underdetermined Least Squares
Problems

0. Pourquier, M. Sadkane

We propose an algorithm based on the Lanczos bidiagonalization to approximate the normwise
backward error of large underdetermined linear system and discuss its theoretical and numerical
aspects. Several numerical tests illustrate the theory. The tests show that the ratio of computational
cost of a good approximation of the normwise backward error to the exact one is about three percent.

Adaptive Conjugate Smoothing of Discontinuous Fields

M. Ragulskis, V.Kravcenkiene

Conjugate smoothing of discontinuous fields is a problem of a high importance in hybrid numer-
ical - experimental techniques when the results of experimental analysis are mimicked in virtual
numerical environment. Typical example is the construction of digital fringe images from finite
element analysis results imitating the stress induced effect of photoelasticity.

Conventional finite element analysis is based on interpolation of nodal variables (displacements)
inside the domain of each element. Though the field of displacements is continuous in the global
domain, the field of stresses is discontinuous at inter-element boundaries due to the operation of
differentiation.

Construction of digital fringe images from finite element analysis results is a typical problem when

discontinuous fields are to be visualized. Therefore it is important to develop numerical techniques
enabling physically based smoothing applicable for visualization procedures.

35



The proposed strategy of smoothing parameter is based on the assumption that the larger smooth-
ing is required in the zones where the discontinuity of the field is higher.

The finite element norm representing the residual of stress field reconstruction in the domain of
the analyzed element is introduced. It can be noted that the calculation of element norms is not
a straightforward procedure. First, the nodal stress values in the global domain are sought by the
least square method minimizing the differences between the interpolated stress field from the nodal
stress values and discontinuous stress field calculated directly from the displacement field. As the
minimization is performed over the global domain and the interpolations are performed over the
local domains of every element, direct stiffness procedure based on Galiorkin method is developed
and applied to the described problem.

When the nodal stress values are calculated, the finite element norms are calculated for each ele-
ment as the average error of the field reconstruction through the interpolation of those nodal values.

It can be noted that the first step of calculation of the nodal values of stress produces a continu-
ous stress field of stresses over the global domain. Nevertheless that field is hardly applicable for
visualization procedures as the derivatives of the field are discontinuous and the plotted fringes are
broken. Therefore the augmented residual term is added to the previously described least squares
procedure while the magnitudes of the terms for every finite element are proportional to the element
norms.

Explicit analysis of the smoothing procedure for the reconstruction of the stress field is presented
for a one-dimensional problem.

Digital images of two-dimensional systems simulating the realistic effect of photoelasticity are pre-
sented. Those examples prove the importance of the introduced smoothing procedure for practical
applications and build the ground for the development of hybrid numerical experimental techniques.

The Finite Differences Scheme for the Euler System of Equations in a Class of
Discontinuous Functions

M. Rasulov,T. Karaguler
The Cauchy problem given as below for the Euler system of equations describing the flow of

perfect fluid is considered

ot 1
ot ;Vﬂa (2)

w(z,0) = up(z). (3)

+(aV)i=F —

Here, @ = (u,v,w) is the velocity vector, F is the body force on an elementary unit volume dv; p
is the surface force (pressure) on a unit surface element ds; p is the density; and V is the nabla
operator; ug(z) is given vector function having a compact support and a positive and a negative
slopes; * = (z,y, z), and t is a time. For the sake of simplicity assume that F =0 and p is known
function.

As it is known that if the initial profile has both a negative and a positive slopes, the solution of
the problem (1), (2) includes the first type points of discountinuity (shock waves) whose positions
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are unknown beforehand. Therefore, the problem (1), (2) does not have a classical solution. In
order to find the weak solution of the problem (1), (2) the following auxiliary problem

ov(x,t) U p

L+ — 4+ 2 =0, 4
ot + 2 + p (4)

v(x,0) = tp(x). (5)

(4) is suggested. Here, ty(x) are any continuous solutions of the following equations %}Efp) = p(x),

and U? = u? + v? + w?. The auxiliary problem (3), (4) has some advantages, and the eq.(3) is
called the Cauchy integral of (1).
Theorem. If a vector function 7(z,t) is a smoother solution of the auxiliary problem (3), (4),

then the vector functions
. ov(x,t)
)= —~""7 6
i, t) = 5 ()

(5) are the weak solution of the problem (1), (2) in the weak sense.
Definition . The functions defined by

B} Ba,t), Bat) < B(0),
Pect(,1) = { B(0), #(a,t) > B(0). @)

are called the extended solutions of the problem (3), (4). Here, E(0) is constant. From the theorem
, for the weak solutions of the problem (1), (2), we have

= 817 t l‘,t

Uezt (T, 1) = ex&i)

Since, the suggested auxiliary problem does not involve any derivatives of u(x,t) with respect to
x, and t the numerical solution to the problem (1), (2) can be obtained with no difficulty through
the numerical solution to the problem (3), (4).

Robust Attainability of a Closed Set for Nonlinear Control Systems under Uncertain
Initial State Information

S. Rigal

In this paper, we investigate the existence of controls which allow to reach a given target
through trajectories of a nonlinear control system in the case of a non exactly known initial state.
For doing this, we use the key concept of invariant tubes and we give a new compactness property
for invariant tubes with values in a prescribed collection of sets. We give some consequences of
this property on the minimal time function to reach the target, and we prove a sufficient condition
for the attainability of the target by invariant tubes of the considered system. If the attainability
property is not satisfied, we characterize a subcollection of initial sets from which the attainability
property holds true, and we provide an algorithm to compute it. This approach is illustrated
through a basic example.
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Semi-Lagrangian Semi-Implicit Time Splitting Two Time Level Scheme for
Hydrostatic Atmospheric Model

R. Anchieta

A semi-Lagrangian semi-implicit two time level scheme is considered for hydrostatic atmospheric
model. The algorithm treats in different ways the principal fastest physical components and in-
significant slowest modes. The former are discretized in semi-implicit manner with second order of
accuracy and the latter are approximated by explicit formulas with the first order of accuracy and
using a coarser spatial grid. This approach allows to reduce the computational cost with no loss of
overall precision of the integrations. Numerical experiments with actual atmospheric fields showed
that the developed scheme supplies rather accurate forecasts using time steps up to one hour and
it is more efficient than three time level counterparts.

Conservative Monotone Difference Schemes for Elliptic and Parabolic Equations
with Mixed Derivatives

1. Rybak

For the development of difference schemes of the higher order of approximation it is important
to save properties of both monotonicity and conservativeness because monotone schemes lead to the
well-posed systems of algebraic equations, and iterative methods converge significantly better in the
case of monotone matrices. Besides, for difference schemes the grid analogues of the conservative
laws must be satisfied.

For elliptic and parabolic equations with mixed derivatives monotone and conservative difference
schemes were proposed by Samarskii, Mazhukin, Matus and Shishkin, but only for constant-sign
coeflicients. If coefficients at mixed derivatives change their signs, differential equations were written
in nondivergence form with first derivatives and monotone schemes were developed by means of
the regularization principle. But in this case property of conservativeness was lost. In theory of
difference schemes such situation is typical .

In this presentation for elliptic and parabolic equations with mixed derivatives new monotone
and conservative difference schemes of the second order of approximation are proposed. The de-
veloped algorithms satisfy the grid maximum principle for both constant-sign and alternating-sign
coefficients. For the proposed schemes the a priori estimations of stability and convergence in the
grid norm C are obtained. Theoretical results are confirmed by the numerical experiments.
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On a Cosmological Model Providing Oscillatory Mode of Expansion
B. Saha and T. Boyadjiev

The discovery of the cosmic microwave radiation has stimulated a growing interest in anisotropic,
general-relativistic cosmological models of the universe. The choice of anisotropic cosmological
models in the system of Einstein field equation enable us to study the early day universe, which
had an anisotropic phase that approaches an isotropic one. On the other hand, though Big Bang
theory is deep rooted among the scientists dealing with early day cosmology, it is natural to look
back if one can model a Universe free from initial singularities. In doing so a nonlinear spinor
field was introduced as a source of an anisotropic space-time given by Bianchi type cosmological
models [1, 2, 3]. In this report a self-consistent system of spinor, scalar and BI gravitational fields
is considered. Einstein field equations in account of the cosmological constant A and perfect fluid
are studied. Solutions of the corresponding equations are given in terms of the volume scale 7(¢) of
the BI metric. It is shown that the problem can be reduced to the following second-order nonlinear
multi-parametric equation

7= F(7,p) (8)

Here F = 3k [mCo +DCy +ep(1 — C)/TC} /2—=3A7, and p = {k, \,m, Cy, C, g9, (, A} is the set of
the parameters. For F' = F(S), in account of S = Co7 for D we have D = A\C?Fs/272(1+\F(9))2.
From mechanical point of view the Eqn.(7) can be interpreted as an equation of motion of a single
particle with unit mass under the force F(7,p). Then the following first integral exists

7 =4/2[E —U(T,p)]. (9)

Here E is the integration constant and U(7,p) is the potential (U = —F) of the force F.
We note that the radical expression must be non-negative. The zeroes of this expression, which
depend on all the problem parameters p define the boundaries of the possible rates of changes
of 7(t). We analyze Eqn. (8) for different choice of the interaction term as well as for different
problem parameters p. It is shown that for a suitable choice of parameters, the Eqn. (7) admits
oscillatory solutions which may be regular at any space-time point, thus giving rise to a singularity-
free cosmological model.
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Stable Discrete Transform from Grid Values to Fourier Polynomial Coefficients

A. Sevastianov

In a number of applied problems appears a task of reconstructing a function f € Wi(G) as a
finite segment of a generalized Fourier series f ~ > fip; according to a full orthonormal system of
functions ¢; € La(G) in case, when about f is known an inaccurate incomplete information on a
finite grid {s*} =S C G as:

a) a perturbed restriction on a grid S of a function f;
b) a perturbed restriction on a grid S of a linear functional of partial derivatives of a
function f.

In case of computer processing of experimental data {f(s*)} one may reconstruct coefficients
{f;} of Fourier series in the space Lo(G) with the help of a matrix Ff of a ”discrete Fourier
transform”, which is searched by a variational regularization method of Tikhonov A.N. The stable
approximate consistent in accuracy level of experimental data calculation of such matrix Ff was
fulfilled earlier.

For a stable reconstruction of Fourier series coefficients {c;} in the space Wi(G) from measured
values of a function f on a grid {s*} we used the stabilization functional || fH%VQ, @ which takes a
form Y- cicj (s, goj)sz () according to a basis ¢;. The constructive method of calculation of the
matrix Mi; = (@i, ¢j)wi() Was presented earlier. For a serial computer processing of {f (s%)} we
used the composition of matrices

(8ij + M)~ o Ff {f(M)) e {o)

The last procedure after a simple modification allows to solve the problem b). The construction of
this discrete transformation was made earlier.

We have fulfilled the accuracy consistent calculation of the matrices of the straight ”discrete
transformation” from the grid values to Fourier coefficients and of the inverse - from Fourier coef-
ficients to the grid values.

Numerical Search for the States with Minimum Dispersion in Quantum Mechanics
with Non-Negative Quantum Distribution Function

A. Sevastianov, V. Zorin, A. Belomestny

In quantum mechanics with non-negative quantum distribution function (QDF) the dispersion
of physical quantity A(x) is described by the functional

@4[0) = [(A = (A)p) () Fy(@)da,

where
(A)p = /A(x)F\p(x)da:,
or by the functional

Dy¥] =

(TO(A%)|¥) (<‘I’O(A)\‘I’>)2
(W]w) (W|w)
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States of minimal dispersion are described by the problem
P A[¥] — 5 min. (10)

The problem (9) while passing on to conventional quantum mechanics (CQM) is transformed into
the problem

Ap© = 4O

on eigenvectors and eigenvalues. These states in CQM possess minimal (trivial) dispersion.

One of the most important problems in quantum mechanics with non-negative QDF is the
problem of optimization of all calculated results with respect to auxiliary functions {yy}. In case
of the problem (9) it is formulated as

{®[¥] =5 min} —y,, 1 min. (11)

It was shown earlier that the variational problems in our quantum mechanics are well stipulated
in the basis of eigenvectors of corresponding problem in CQM. So one may pass on to coordinate
representation of (10):

{{{ ZCjOjk(AQ)Ck} - {ZC’jOjk(A)Ck}Q} oyl = min} — ()} Min (12)
gk J.k i

where the vector {C;} € Iy defines the expansion | =" C’jlllgo).
J

It was also shown earlier that it is possible to look for the solution of the problem (11) near
solutions of the corresponding problem in CQM, i.e. to look for the solution of (11) in the form

U =3 (6 + 5Cj)\11§0). Then the linearized Euler-Lagrange equation of (11) takes the form

J

5 {O0ir(4%) — 20, (A)031(4) — 20 (A10p(A) = Ny }3Ci = 0
k

with 6C), = 0.

Numerical Solution of Integro-differential equations system by Block-pulse Functions

M.Shahrezaee

In this paper, we first introduce Block-pulse functions and then we use this functions for solving
the Integro-differential equations. In the second step we generalized the method for solving a system
of Integro-differential equations. Finally, theoretical analysis and numerical experiment provided
to support the method.
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Finite Difference Method for Thermal Analysis of Passive Solar System with Massive
‘Wall

S. Shirakov, A. Stoilov

The concept of passive solar systems is well-known method for using the solar energy, as a
source of heating in buildings. Technical, economic, social and environmental analyses determine
these systems, as the easiest way for solar energy utilization in buildings. The major impediments
to increase market penetration for passive solar systems are the lack of available information and
experience data. Experiments with passive solar systems with massive walls are very expensive
and there are not enough test installations. Alternatively, mathematical treatment of massive
wall systems is a very useful tool for investigation. The objectives of this work are to develop
(and validate) a numerical solution model for predication of the thermal behaviour of passive solar
systems with massive wall, to improve knowledge of using indirect passive solar systems and assess
its energy efficiency according to climatic conditions in Bulgaria. Literature review shows that, the
problem of passive solar system with massive wall (Trombe wall) is ordinarily modelled on using
thermal and mass transfer equations. Main governing equation for heating processes is transient
energy balance equations, which is parabolic partial difference equation. As a boundary conditions
for the mathematical problem are used equations, which describe influence of weather data and
constructive parameters of building on the thermal performance of the system. The mathematical
model, composed for the massive wall performance, is usually very complicated and for solving
the mathematical system of equations is needed to apply a different set of assumptions. The
presented in this paper simulation scheme comprises three layers: a transparent cover (one or
two glasses or plastic plates), massive wall (masonry, concrete) and air gap between transparent
cover and massive wall. This scheme is modelled on governing partial difference equation and
algebraic system of equations, as a boundary condition. Finite differences method is used to solve
this mathematical system. Because of complicated boundary condition, a special improved solution
procedure was developed. Computer program for simulation calculations is developed on the base of
solution procedure. To verify the applicability of the above-proposed technique, extensive numerical
experiments have been carried out. A good correspondence with published experimental data was
received. The results of presented mathematical model would help us to increase our experience in
passive solar systems. The designers of passive solar systems can use this model to select optimal
constructive parameters of the massive wall. We expected, that this model and computer program
would allow us to expand the scope of designers calculation methods (SLR - method, U-U - method)
for different constructions of passive systems.
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The A-Error Order In Multivariate Interpolation

D. Simian

The aim of this article is to introduce and study a generalization of error order in multivariate
interpolation. Let A = {\1,..., A} be a set of linear functionals, V apolynomial interpolation space
with respect to conditions A and L, the corresponding interpolation operator. We introduce the
A - remainder: Ry \(f) = A[(1 — La)(f)]; f € Ao; A € II'. We name the X - order of interpolation
the largest k& with Rj = 0 forall polynomial of degree less then k. We derived the general form of
A - order of interpolation and then we studied it for many multivariate interpolation schemes. In
the end we established an algorithm to determine A - order of interpolation.

Computational Aspects in Spaces of Bivariate Polynomial of W-degree n

D. Simian, C. Simian, A. Moiceanu

Multivariate ideal interpolation schemes are deeply connected with H-bases. Any ideal in-
terpolation space with respect to a set of conditions A, can be obtained like a space of reduced
polynomials modulo a H-basis of the ideal ker(A). The definition of a H-basis depends of the notion
of degree used in the grading decomposition of the polynomial spaces. We studied, in the case of
bivariate polynomials, a generalized degree, introduced by T. Sauer and named w-degree. This
article give some theoretical results that allow us to construct algorithms for calculus in the space
of bivariate polynomials of w-degree n and for reduction process modulo a H-basis. Analysis of
this algorithms is done. We realize C++ programs using these algorithms. Taking into account
the connection between H-bases and multivariate interpolation we studied also algorithmical and
computational aspects of multivariate interpolation in polynomial spaces of w-degree n.

Effective Inner-Iterations in Jacobi-Davidson

G. Sleijpen, A. Stathopoulos

Jacobi-Davidson is an efficient method for computing part of the spectrum of large sparse ma-
trices, either symmetric, or non-symmetric and even complex. The method is attractive since
preconditioners can be exploited. It finds approximate solutions in a search subspace. The quality
of the approximations is iteratively improved by an expansion of the search subspace (the outer
loop). The expansion vectors are obtained from linear equations (the inner loop), so-called, cor-
rection equations. Exact solutions of these equations lead to quadratic convergence of the outer
loop or cubic in case of symmetric matrices. Usually it is not feasible to compute the solutions
exactly or to high accuracy. But, even with approximate solutions, there is often fast convergence.
Nevertheless, more accurate solutions of the correction equations often results in faster convergence.
More accurate solutions in the inner loop are obtained at higher computational costs and is not
clear what strategy minimizes the overall costs for computing eigenvectors.

In this talk we first review the work by Notay and Stathopoulos for symmetric matrices: they
provide an effective stopping criterion for the inner loop when certain iterative linear solvers have
been used. Then, we discuss how their approach can be extended to more general matrices.
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Quantum Macroscopic Coherence in Josephson Junction Networks with Non
Conventional Architectures

P. Sodano

We shall focus on the interesting properties emerging in Josephson networks with non-conventional
architectures showing, by means of explicit examples, how the networks topology and geometry may
either lead to novel and unexpected coherent phenomena or be responsible for taming de- coherence
in quantum Josephson devices. We shall also comment on some network s geometries leading to
remarkable connections with gauge theories.

Anisotropic Adaptation Applied to Three Dimensional Unstructured Grids
A. Sorokin, N. Viadimirova

The anisotropic grid adaptation technique of thee dimensional unstructured grids is developed.
The adaptation procedure identifies three directions of adaptation at each grid node, the refinement
of grid edges aligned to these directions and reconnection. The directions of adaptations at the
node are defined as a direction of minimal change of monitor function, a direction of maximal
change and the direction orthogonal to the previous two. The interpolation based error indicator
at an edge utilized in edge refinement is defined as a weighted sum of the first and second order
derivatives of monitor function along an edge direction. The reconnection process aligns all edges to
direction of minimal change of monitor function, except the ones aligned to the direction of maximal
change of this function. The developed adaptation algorithm was applied to convection-diffusion
problems. The solutions of these problems simulate three-dimensional curved viscous wakes with
large gradients of Mach number. The explored dependencies of numerical errors on the number of
grid nodes showed good correlations with theoretical predictions. The industrial application to the
Euler transonic flow over a wing with wing tips is considered. In this problem the body geometry
and initial isotropic grid was constructed with CAD system. The grid adaptation successfully
resolved regions with large gradients of numerical solution at the shocks and leading edges.

Applications of Price Functions and Haar Type Functions to the Numerical
Integration

S. Stoilova

By analogy with the theory of good lattice points for the numerical integration of rapidly
convergent Walsh series, in the present paper the author use the Price functional system and Haar
type functional system, defined in the generalized number system, for numerical integration. We
consider two classes of functions, whose Fourier-Price and Fourier-Haar coefficients satisfy specific
conditions. For this classes we obtain the exact orders of the error of the quadrature formula with
good lattice points, constructed in the generalized number system.
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Numerical Modelling of the Free Film Dynamics and Heat Transfer under the van
der Waals Forces Action

S. Tabakova, G. Gromyko, L. Popova

In the present work a numerical model of the heat transfer of a hot free thin viscous film attached
on a rectangular colder frame surrounded by an ambient gas is proposed. The film is assumed to
be under the action of the capillary forces and attractive intermolecular van der Waals forces and
to be symmetric to a middle plane. The heat transfer is due to conduction and radiation with the
ambient gas and forced convection caused by the film dynamics. Since the film thickness is very
small compared to the frame length, their ratio is expressed as a small parameter €. The leading
order terms of the asymptotic expansion in € of the mass, momentum and energy balance equations
are given with the appropriate boundary and initial conditions. Their one-dimensional form is
solved numerically by a conservative finite difference scheme on staggered grid. The numerical
results for the film shape, longitudinal velocity and temperature are obtained as depending on time
for a large range of the process parameters: Reynolds numbers, dimensionless Hamaker constants
and radiation numbers.

A High Order Parallel Method for Time Discretization of Parabolic Type Equations
Based on Laplace Transformation and Quadrature.

V. Thomee

We consider the discretization in time of a parabolic equation, using a representation of the
solution as an integral along a smooth curve in the complex left half plane. The integral is then
evaluated to high accuracy by a quadrature rule. This reduces the problem to a finite set of
elliptic equations, which may be solved in parallel. The procedure is combined with finite element
discretization in the spatial variables. The method is also applied to some parabolic type evolution
equations with memory.

Two-Stacked Josephson Junctions with Minimal Length
M. Todorov, T Boyadjiev

In the present work two-stacked homogeneous Josephson junctions are investigated numerically.
Bound states of types “fluxon-fluxon” and “fluxon-antifluxon” are obtained. The affect of the
interaction between stacks in the junctions, the boundary magnetic field, and the bias current
upon minimal length is studied. The governing equations as a nonlinear eigenvalue problem with
respect to the junction length are considered and by Continuous Analog of Newton Meth
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Convergence Analysis for Eigenvalue Approximations on Triangular Finite Element
Meshes

T. Todorov

The paper is devoted to the eigenvalue problem for second order strongly elliptic operator.
The problem is considered on curved domains, which require interpolated boundary conditions in
approximating finite element formulation. The necessary triangulations for solving the eigenvalue
problem consists of isoparametric elements of degree n, where n is any integer greater than two.

An approximating numerical quadrature eigenvalue problem is the object of investigation in
this paper. The considered convergence analysis is a crucial point for estimating of the error in
approximating eigenvalues. An isoparametric approach is the basic tool for proving the convergence.

A definition and a Criterion for Pseudo Asymptotes and some Remarks on the
Graphycs of the Curves with Psewdo Asymptotes and Asymptotes

A. Tomova

In this paper we describe a definition for pseudo asymptotes of differentiable functions and
restrict the attention over the behaviors of some functions with pseudo asymptotes. We prove a
criterion for existence of pseudo asymptotes and asymptotes for differentiable functions. Using the
system for computer algebra MATHEMATICA 4.0 we obtain a set of elementary functions and an
other set of special functions with pseudo asymptotes. We draw the graphics of such functions and
make some conclusions.

Two Resultant Based Methods Computing the Greatest Common Divisor of
Polynomials

D. Triantafyllou, M. Mitrouli

The computation of the Greatest Common Divisor (GCD) of two or more polynomials is one of
the most frequent problems in several fields such as numerical analysis, linear and numerical linear
algebra, control theory, matrix theory, statistics etc. Many numerical algorithms have been created
to solve this problem.

In this paper we develop two resultant based methods for the computation of the GCD of two
polynomials. Let a(s),b(s)eR[s] be two polynomials, where a(s) is a monic polynomial of degree m,
and b(s) a polynomial of degree n, with n <m. Let S be the resultant Sylvester’s matrix of the
two polynomials. If we apply Gaussian Elimination with partial pivoting or QR factorization to
the previous matrix, the last non-zero row defines the coefficients of the GCD. If we modify matrix
S to §*, such that the rows with non-zero elements under the main diagonal, at every column, are
gathered together, because of this special form of S*, we do not need to zero all the elements under
the diagonal and we do not have to update the whole (m+n-k+1)x(m+n-k+1) submatrix at every
stage. We constructed modified versions of the LU and QR procedures which require only the %
of floating point operations than the operations performed in the general LU and QR algorithms.
More precisely for a 2n x 2n matrix the LU and QR procedures require O (%n3) and O (%n:)’) flops

respectively whereas the modified LU and QR require only O ( %n‘s) and O (%nd) flops respectively.
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In practice the required flops are much less than the previous bounds. Finally, we give a bound for
the error matrix which arises if we perform Gaussian elimination with partial pivoting to S*. Both
methods are tested for several sets of polynomials and tables summarizing all the achieved results
are given.

Conservative Difference Scheme for Summary Frequency Generation of Femtosecond
Pulse

V. Trofimov, A. Borhanifar, A. Volkov

As it is known, three-wave interaction of femtosecond pulses in optical fiber with quadratic
nonlinear response is described by the following set of equations
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To solve (12) let us introduce a new function E; in the following manner

OF;
—atf +iw;E; = Aj,  j=1,2,3.

In this case, the set of equations (12) transforms to
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Using the approach developing in our previous papers, we created the conservative difference
scheme for the above set of equations with the second order of approximation ¥ = O(h? + 72).
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Aj(x+h,t) = (Ej(x + h,t+7)— Ej(x + h,t —7))/(27) + iw;j Ej(x + h, 1), j=1,2,3.

This work was supported by Russian Foundation for Basic Research (grant N 02-01-727).

47



Comparison of some Difference Schemes for the Problem of Femtosecond Pulse
Interaction with Semiconductor at Nonlinear Mobility Coefficient

V. Trofimov, Maria M. Loginova

The femtosecond pulse interaction with the semiconductor under certain conditions is described
by the following set of dimensionless differential equations

o ) N—n2
G2 == N), G =qa(@)d(N,p) - =, 2
o] N—
5 = Dgp(Gs — pla,tng2) + qua(2)d(N,9)) = "8, 0<z <Ly t>0,  (14)
0 _ 0 _ _ _
o 2=0,L, o @=0,L, 0, M=o = Nli=o =0

with following absorption and mobility coefficients

d(N,p)=(1—-N) {em“", AEL cosh B, coshﬂE} , E= —g—i, w(x,t) = po/(1+ |E|/Eer).
In this report we deal with comparison of various difference schemes for the system (13). The
evolution of semiconductor characteristics substantially depends on parameters values involving in
the system (13) and on the nonlinear absorption coefficient. Particularly, there is a possibility of
the forming of switching waves and as well development of oscillating regimes, which take place
due to the system instability.
For the problem solution one can use the difference scheme proposed in [1]. But using the
transformation n(z,t) = 7(z,t)etor it is easily to construct monotonous difference scheme regard
to n [2]. After this transformation the initial system (13) can be reduced to the following form:

OE on Oy ON 10%p oF E
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0<z<Ly, t> 0.

For problem (14) the difference scheme is created.

It should be stressed, that for some parameters values the iterative process in scheme proposed
in [1] loses its convergence. Step decreasing does not change this situation substantially. But for
the scheme, constructed on the base of system (14), there is no such problem.

This work was supported by Russian Foundation for Basic Research (grant N 02-01-727).
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Soliton-like Regime of Femtosecond Laser Pulse Propagation in Bulk Media under
the Conditions of SHG

V. Trofimov, T. Lysak

The report is devoted to the numerical investigation of soliton-like propagation of two interacting
femtosecond pulses with high intensity in the bulk media. One of them is basic wave. The frequency
of second pulse corresponds to doubling frequency of first wave. We discuss regime of pulses
propagation for which the constant values of their intensities in the central part take place. However,
the intensities can change essentially at the back and the front of pulses.

Similar propagation regime appears at the SHG under the condition of simultaneous action
of quadratic and cubic nonlinearities. For this purpose, the phase mismatch has to be between
interacting waves. Other condition concludes in special choosing of nonzero input amplitudes with
certain phase difference between them. It should be stressed that the preceding condition, referring
to phase shift between two pulses, cannot take into account for laser pulse propagation in layered
media. For example, it is necessary to introduce in the special section of the media a certain phase
shift between interacting waves.

To solve the problem, which is described of two NSE in two spatial coordinates and time with
quadratic and cubic nonlinearities, we use conservation laws. In the long-time approximation for
flat beam profile, the analytical solution of SHG problem is constructed. Using it, parameters
of soliton-like propagation regime is calculated. Then, these parameters are used for numerical
simulation, which is made on the base of conservative difference scheme, taking into account the
conservation laws of the problem. For simplicity, we have assumed the radial symmetry of the
media and input beames. Previous analytical investigation was proofed and soliton-like regime
takes place.

This paper was supported partly by REBR (grant N 02-01-727).

Computational Method for Finding Soliton Solutions of the Nonlinear Shrédinger
equation

V. Trofimov , S. Varentsova

The propagation of the femtosecond laser pulse in an optical fiber in media with a cubic non-
linearity can be described by the dimensionless Shrédinger equation

0A 0°A
—— +i— +ialAlPA = L 1
a2—1-283624—104 | 0, 2>0, 0O<z< (16)

with the following initial and boundary conditions
Al,_o = Ao(z), A’x:O,L =0,

where A(zx, z) is the complex amplitude of the pulse, normalized to its maximum value, z is the
transverse coordinate measured in units of the initial beam radius, z is the longitudinal coordinate
along which the laser beam propagates, « is the coefficient equal to the ratio of the input power
of an optical beam to the characteristic power of the self-action, L is a size along the transverse
coordinate. The self-action of the beam takes place, if & > 0. For the opposite case o < 0 the
optical beam is defocusing.
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The soliton solutions of equation (15) are given by

Az, z) = w(x)efi)‘z

with real functions ¢ (x) and real eigenvalues A. For this case the equation (15) reduces to the form

d*y ()
dx?

+ o (z) = Mp(z), O<z<L, (17)
Y(0) =y(L) =0.

We propose a computational method for solving the nonlinear eigenvalue problem (16). It
allows to find eigenvalues Ay and eigenfunctions 1, (x) with numbers k£ > 1 for any value of a with
a special choice of the initial approximation to the solution of equation (16).

Computer experiments show that for the limited on z interval it is necessary to decrease the
value of L in order to separate the eigenvalues when |a| increases in contrast to the case of the
unlimited region 0 < z < 0o or —oco < x < oo. The possible way in computer simulation of the
eigenvalue separation for big |«| consists on consecutive calculations with condensing meshes. At
first we use the rough mesh. In this case we can define the first & eigenfunctions v (x). Then it is
necessary to decrease a mesh step and the next k' eigenfunctions can be found. If necessary, this
procedure can be repeated once more.

This paper was supported partly by REBR (grant N 02-01-727).

Numerical Method of a Solution of a Nonlinear Problem about the Static Instability
of a Plate in a Supersonic Gas Flow

P. Vel’'misov, S. Kireev

The static problem about deflection forms of a plate - band in a supersonic gas flow, described
by the nonlinear differential equation

appoV?

V] (18)
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is considered. Here D is the deflection stiffness of the plate; V, pg are the velocity and density of
the gas, a - the sound velocity of the homogeneous flow; N - the compressing (stretching) effort; M
- the Mach number, a; - coefficients, characterizing the stiffness of the ground; the integral term
takes into account the nonlinear effect of the longitudinal stress; aw’ - a term related to the
aerodynamics effect, oy = 1(ap = 2) corresponds to one-side (two-side) flow along the plate; w(z)
- plate deflection; all coefficients of equations (17),(18) are constants. In (18) ¢;,d;(i =0+ n,j =
0+ m) are arbitrary, part of them must be equal to zero; the boundary conditions can be linear or
nonlinear depending on the values of these coefficients. The value of the m and n must be equal
00.

The numerical realization is that a boundary value problem is led to an initial Cauchy problem.
Lacking initial conditions of a Cauchy problem are defined by means of parameters which are
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selected by the Newton’s method help. The Cauchy problem is solved by the Runge-Kutta method
of the sixth order with the pitch error monitoring. The Cauchy problem complexity is that the
nonlinearity as an integrated item there is at the equation. The integrated item is defined by
the help of the Newton-Cotes quadrature formula. The nonlinearity is solved by the constructed
iteration process. The program is written by Delphi-6 language. The bifurcation diagrams which
show dependence of the maximum sag of a plate from of the velocity of the gas flow are formed by
means of this program.

Computer Modeling Waves in Anisotropic Crystals
V. Yakhno, H. Akmaz

This paper includes mathematical modeling and simulating the wave propagations in anisotropic
solids and crystals with different structure of anisotropy. Dynamic mathematical models of elastic
wave propagations in anisotropic media are described by the following system of partial differential
equations

Duj 23: Cm 2 +fi(a,t), zeR3 t>0
= ; (x T
P 2 L jklm 8xk6xl g\t t)y ) )
’ 7m:]-
Ouj(z,t) .
uj(z,0) = ¢;(x), ]T =i(z), j=1,2,3.
t=0
Here p is the density of the medium, u(zx,t) = (ui(x,t), uz(x,t), us(z,t)) is small amplitude vibra-
tions, {Cjklm}?,k,l,mzl are the elastic moduli of the medium, ¢;(z), ¥;(x), f;(z,t), j = 1,2,3 are

given functions. We assume that p and Cj, are constants.

An iterative procedure of finding a solution of this initial value problem with polynomial data
is described in this paper. Wave fields for different anisotropic materials are simulated by this
procedure. We have used Mathematica 4.0 to generate 3-D images and animated movies of elastic
wave propagations in crystals. These images are collected in the library of images. This library
can serve as a set of patterns and samples when we analyze the structure of anisotropic materials
or evaluate the performance of numerical methods.

Parametrically Driven Dark Solitons: a Numerical Study

E. Zemlyanaya, 1. Barashenkov, S. Woodford

The parametric driving is well known to be an efficient way of compensating dissipative losses
of solitons in various media. In a number of applications the amplitude equation of the paramet-
rically driven wave turns out to have the nonlinearity of the “defocusing” type. We consider the
parametrically driven, damped nonlinear Schrédinger equation

. 1 - .
“bt"f_iwxx_ ‘ 1/) ’2¢+¢=h¢—l’ﬂ!} (20)
where h is driver’s srtength and ~ is a dissipation coefficient.

The localized solutions forming in the defocusing media are domain walls, or kinks, also known
as “dark solitons” in the context of nonlinear optics.
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Our purpose is to numerically explore the stability and bifurcations of the dark solitons of
Eq.(19) and their bound states. Results of the numerical analyzes are presented for both damped
and undamped cases.

It is shown that unlike the bright solitons, the parametrically driven kinks are immune from
instabilities for all dampings and forcing amplitudes; they can also form stable bound states. In
the undamped case, the two types of stable kinks and their complexes can travel with nonzero
velocities.

The remarkable stability of the damped-driven kinks and their bound states is in sharp contrast
with stability properties of the bright solitons. The stable coexistence of two types of domain walls
and their complexes in the undamped case is also worth emphasising; this multistability is not
observed in the parametrically driven Klein-Gordon and Ginzburg-Landau equations.

Investigation of the Viscous Flow in a Chemical Reactor with a Mixer

1. Zheleva, A. Lecheva

Tank reactors with different mixers are very often used for many chemical and biological pro-
cesses. For their effective use is necessary to know in details hydrodynamics and mass transfer
which take place in them. For many practically important cases the experimental study of these
processes is very expensive or impossible. This is why recently mathematical modeling of the com-
plex swirling flows in such reactors becomes an effective method for investigation of the behavior
of the fluids in these reactors. This paper presents mathematical model and numerical results
for viscous swirling flow in a cylindrical tank reactor with a mixer. The model is based on the
Navier-Stokes equations in cylindrical co-ordinate system which are written in terms of the stream
function, vorticity and the momentum of the tangential component of the velocity. The flow is
supposed to be stationary and axes-symmetric. A special attention is devoted to the correct for-
mulation of the boundary conditions. A numerical algorithm for studying this motion of the fluid
is proposed. The grid for the discretization of the equations is no uniform. Difference scheme
of Alternating Direction Implicit Method for solving Navier-Stokes equations is used. Numerical
results for the stream function, the velocity field and the momentum of the tangential velocity for
different Reynolds numbers are obtained by this numerical algorithm. The results are presented
graphically. They are discussed and compared with other authors results. It is observed a very
good agreement between them.

Stability Analysis of a Nonlinear Model of Wastewater Treatment Processes

P. Zlateva, N. Dimitrova

Clean water is essential for health, recreation and life protection among other human activities.
The activated sludge processes are most widely used biological systems in wastewater treatment.
These processes are very complex due to their nonlinear dynamics, large uncertainty in uncontrolled
inputs and in the model parameters and structure.

In this paper a nonlinear mathematical model of an activated sludge wastewater treatment
process is considered. The Haldane law as the specific growth rate function is selected. Assuming
that some of the model parameters are unknown but bounded, stability analysis of the steady states
is carried out. Computer simulation results in Maple are also performed.
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About One Iteration Method for Solving Difference Equations
G. Zverev

The numerical analysis of a wide range of applied problems of mathematical physics leads to
necessity of solution of Linear Algebraic Equations System (SLAE), which arises at discretization
of decision region and substitution of the differential operators by difference analogues. Despite
of rapid progress in computing capacity, the problem of SLAE effective solution is one of the
fundamentals in computational mathematics. Actuality of this problem at present is more increased
in connection with wide propagation of numerical calculations and a rise in requirements to their
accuracy and rate of realization [1].

In the given paper, a new iterative line-by-line method with a variable compensation parameter
is proposed for solving a system of difference equations when arises from implicit approximation of
two-dimensional differential elliptical and parabolic equations. It is further developments of modi-
fied and block line-by-line methods [2, 3]. The proposed computational technologies is convenient
in practical application, maintain methodology of an alternating direction method and based on
solution of one-dimensional three-point difference equations along grid lines.

The high efficiency of the method is conditioned by increasing ellipticity of its algorithm that
answers the nature of a differential equation. The implicit consideration of a difference flux from
other grid direction, a decrease of the iterative expression norm and application of variable com-
pensation parameter (terminology [4]) allow to reach it. The values of a variable compensation
parameter are evaluated in each grid node of calculation domain. The evaluation is based on an
iterative expression minimum at definition of coefficients of two-point recurrence relations for a grid
function. The physical interpretation of iteration algorithm is given. The method enables to apply
a technology of parallel calculations.

The iteration method is approved on the test Dirichlet’s problem for a Poisson’s equation [1].
Calculations have showed that method’s convergence rate is insensitive to variation of coefficients
at high derivatives and weakly depends on grid’s dimension. The application of new computational
technology is especially effective on detailed grids and allows to reducing necessary number of
iterations up to two orders of magnitude as compared with the line-by-line method [5] for solving
SLAE.
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Three-level Difference Schemes on Non-Uniform Grids

E. Zyuzina

In this paper we consider three-level operator-difference schemes for the boundary value prob-
lems of mathematical physics of parabolic and hyperbolic type on the non-uniform in time grid:

Dyt_i—f_By;—'_Ay:gO’ ted)T) Yo = Uo, Y1 = uy,

éT:{tn:tn—l'i_Tn) n€1727"'7N7 t0:07 tN:T}:wTU{()?T}

Three-level difference schemes for the problems of mathematical physics on uniform grids are
widely studied. Necessary and sufficient conditions of stability were already obtained in the sense
of the initial data and the right-hand side in finite-dimensional Hilbert spaces. However for the
problems with singularities the use of non-uniform grids both in space and in time is more advisable.
In this work a priori estimates of stability of numerical solution with respect to the initial data and
the right hand side on the non-uniform time grid are obtained.

While going over from uniform grid to a non-uniform one the order of local approximation
decreases. Raising the order of local approximation is very important requirement for numerical
solution of the mathematical physics problems on coarse grids. In presented paper new difference
schemes with weights of the second order of approximation on the standard stensils are constructed
and investigated for parabolic and hyperbolic problems on the non-uniform in time grids. All
theoretical results are confirmed by computational experiments.
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